test_pool3d_op.py 12.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from __future__ import division
17

C
chengduoZH 已提交
18 19
import unittest
import numpy as np
20

21
import paddle.fluid.core as core
22
from op_test import OpTest
C
chengduoZH 已提交
23 24


25 26 27 28 29 30 31 32
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


33 34 35 36 37
def max_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
38
                             ceil_mode=False,
39 40
                             exclusive=True,
                             adaptive=False):
C
chengduoZH 已提交
41
    N, C, D, H, W = x.shape
C
chengduoZH 已提交
42 43
    if global_pool == 1:
        ksize = [D, H, W]
44 45 46 47 48 49 50 51 52 53 54 55
    if adaptive:
        D_out, H_out, W_out = ksize
    else:
        D_out = (D - ksize[0] + 2 * paddings[0] + strides[0] - 1
                 ) // strides[0] + 1 if ceil_mode else (
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        H_out = (H - ksize[1] + 2 * paddings[1] + strides[1] - 1
                 ) // strides[1] + 1 if ceil_mode else (
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
        W_out = (W - ksize[2] + 2 * paddings[2] + strides[2] - 1
                 ) // strides[2] + 1 if ceil_mode else (
                     W - ksize[2] + 2 * paddings[2]) // strides[2] + 1
C
chengduoZH 已提交
56
    out = np.zeros((N, C, D_out, H_out, W_out))
57
    for k in range(D_out):
58 59 60 61 62 63
        if adaptive:
            d_start = adaptive_start_index(k, D, ksize[0])
            d_end = adaptive_end_index(k, D, ksize[0])
        else:
            d_start = np.max((k * strides[0] - paddings[0], 0))
            d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
64
        for i in range(H_out):
65 66 67 68 69 70
            if adaptive:
                h_start = adaptive_start_index(i, H, ksize[1])
                h_end = adaptive_end_index(i, H, ksize[1])
            else:
                h_start = np.max((i * strides[1] - paddings[1], 0))
                h_end = np.min((i * strides[1] + ksize[1] - paddings[1], H))
71
            for j in range(W_out):
72 73 74 75 76 77
                if adaptive:
                    w_start = adaptive_start_index(j, W, ksize[2])
                    w_end = adaptive_end_index(j, W, ksize[2])
                else:
                    w_start = np.max((j * strides[2] - paddings[2], 0))
                    w_end = np.min((j * strides[2] + ksize[2] - paddings[2], W))
C
chengduoZH 已提交
78 79 80 81 82 83
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

                out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
    return out


84 85 86 87 88
def avg_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
89
                             ceil_mode=False,
90 91
                             exclusive=True,
                             adaptive=False):
C
chengduoZH 已提交
92
    N, C, D, H, W = x.shape
C
chengduoZH 已提交
93 94
    if global_pool == 1:
        ksize = [D, H, W]
95 96 97 98 99 100 101 102 103 104 105 106
    if adaptive:
        D_out, H_out, W_out = ksize
    else:
        D_out = (D - ksize[0] + 2 * paddings[0] + strides[0] - 1
                 ) // strides[0] + 1 if ceil_mode else (
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        H_out = (H - ksize[1] + 2 * paddings[1] + strides[1] - 1
                 ) // strides[1] + 1 if ceil_mode else (
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
        W_out = (W - ksize[2] + 2 * paddings[2] + strides[2] - 1
                 ) // strides[2] + 1 if ceil_mode else (
                     W - ksize[2] + 2 * paddings[2]) // strides[2] + 1
C
chengduoZH 已提交
107
    out = np.zeros((N, C, D_out, H_out, W_out))
108
    for k in range(D_out):
109 110 111 112 113 114
        if adaptive:
            d_start = adaptive_start_index(k, D, ksize[0])
            d_end = adaptive_end_index(k, D, ksize[0])
        else:
            d_start = np.max((k * strides[0] - paddings[0], 0))
            d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
115
        for i in range(H_out):
116 117 118 119 120 121
            if adaptive:
                h_start = adaptive_start_index(i, H, ksize[1])
                h_end = adaptive_end_index(i, H, ksize[1])
            else:
                h_start = np.max((i * strides[1] - paddings[1], 0))
                h_end = np.min((i * strides[1] + ksize[1] - paddings[1], H))
122
            for j in range(W_out):
123 124 125 126 127 128
                if adaptive:
                    w_start = adaptive_start_index(j, W, ksize[2])
                    w_end = adaptive_end_index(j, W, ksize[2])
                else:
                    w_start = np.max((j * strides[2] - paddings[2], 0))
                    w_end = np.min((j * strides[2] + ksize[2] - paddings[2], W))
C
chengduoZH 已提交
129 130
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

131
                field_size = (d_end - d_start) * (h_end - h_start) * (w_end - w_start) \
132
                             if (exclusive or adaptive) else ksize[0] * ksize[1] * ksize[2]
133 134
                out[:, :, k, i, j] = np.sum(x_masked, axis=(2, 3,
                                                            4)) / field_size
C
chengduoZH 已提交
135 136 137 138 139
    return out


class TestPool3d_Op(OpTest):
    def setUp(self):
K
Kexin Zhao 已提交
140
        self.op_type = "pool3d"
141
        self.use_cudnn = False
K
Kexin Zhao 已提交
142
        self.dtype = np.float32
C
fix bug  
chengduoZH 已提交
143
        self.init_test_case()
C
chengduoZH 已提交
144
        self.init_global_pool()
K
Kexin Zhao 已提交
145
        self.init_kernel_type()
C
chengduoZH 已提交
146
        self.init_pool_type()
147
        self.init_ceil_mode()
148
        self.init_exclusive()
149
        self.init_adaptive()
C
chengduoZH 已提交
150

C
fix bug  
chengduoZH 已提交
151 152
        if self.global_pool:
            self.paddings = [0 for _ in range(len(self.paddings))]
K
Kexin Zhao 已提交
153
        input = np.random.random(self.shape).astype(self.dtype)
154 155
        output = self.pool3D_forward_naive(
            input, self.ksize, self.strides, self.paddings, self.global_pool,
156
            self.ceil_mode, self.exclusive, self.adaptive).astype(self.dtype)
K
Kexin Zhao 已提交
157
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
158 159 160 161 162

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
163 164
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
165
            'use_cudnn': self.use_cudnn,
166
            'ceil_mode': self.ceil_mode,
167 168
            'data_format':
            'AnyLayout',  # TODO(dzhwinter) : should be fix latter
169 170
            'exclusive': self.exclusive,
            'adaptive': self.adaptive
C
chengduoZH 已提交
171 172
        }

K
Kexin Zhao 已提交
173
        self.outputs = {'Out': output}
C
chengduoZH 已提交
174

175
    def has_cudnn(self):
176 177
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
178
    def test_check_output(self):
179
        if self.has_cudnn():
180 181 182 183
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
184 185

    def test_check_grad(self):
K
Kexin Zhao 已提交
186 187
        if self.dtype == np.float16:
            return
188
        if self.has_cudnn() and self.pool_type != "max":
189 190 191 192
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
193
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
194

C
fix bug  
chengduoZH 已提交
195
    def init_test_case(self):
C
chengduoZH 已提交
196 197 198 199 200
        self.shape = [2, 3, 5, 5, 5]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [0, 0, 0]

K
Kexin Zhao 已提交
201 202
    def init_kernel_type(self):
        pass
C
chengduoZH 已提交
203 204 205 206 207 208 209 210

    def init_pool_type(self):
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive

    def init_global_pool(self):
        self.global_pool = True

211 212 213
    def init_ceil_mode(self):
        self.ceil_mode = False

214
    def init_exclusive(self):
215
        self.exclusive = True
216

217 218 219
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
220 221

class TestCase1(TestPool3d_Op):
C
fix bug  
chengduoZH 已提交
222
    def init_test_case(self):
C
chengduoZH 已提交
223 224 225
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
C
chengduoZH 已提交
226
        self.paddings = [0, 0, 0]
C
chengduoZH 已提交
227

C
chengduoZH 已提交
228
    def init_pool_type(self):
C
chengduoZH 已提交
229 230
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive
C
chengduoZH 已提交
231 232 233 234 235 236 237

    def init_global_pool(self):
        self.global_pool = False


class TestCase2(TestPool3d_Op):
    def init_test_case(self):
C
chengduoZH 已提交
238 239 240 241 242
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
243 244 245 246 247 248 249
    def init_pool_type(self):
        self.pool_type = "avg"
        self.pool3D_forward_naive = avg_pool3D_forward_naive

    def init_global_pool(self):
        self.global_pool = False

C
chengduoZH 已提交
250 251

class TestCase3(TestPool3d_Op):
C
chengduoZH 已提交
252
    def init_pool_type(self):
C
chengduoZH 已提交
253 254 255 256
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive


C
chengduoZH 已提交
257 258
class TestCase4(TestCase1):
    def init_pool_type(self):
C
chengduoZH 已提交
259 260
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive
C
chengduoZH 已提交
261 262


C
chengduoZH 已提交
263 264
class TestCase5(TestCase2):
    def init_pool_type(self):
C
chengduoZH 已提交
265 266
        self.pool_type = "max"
        self.pool3D_forward_naive = max_pool3D_forward_naive
C
chengduoZH 已提交
267 268


269 270
#--------------------test pool3d--------------------
class TestCUDNNCase1(TestPool3d_Op):
K
Kexin Zhao 已提交
271
    def init_kernel_type(self):
272
        self.use_cudnn = True
K
Kexin Zhao 已提交
273 274 275 276 277 278 279 280 281 282 283 284


class TestFP16CUDNNCase1(TestPool3d_Op):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
285 286


287
class TestCUDNNCase2(TestCase1):
K
Kexin Zhao 已提交
288
    def init_kernel_type(self):
289
        self.use_cudnn = True
K
Kexin Zhao 已提交
290 291 292 293 294 295 296 297 298 299 300 301


class TestFP16CUDNNCase2(TestCase1):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
302 303


304
class TestCUDNNCase3(TestCase2):
K
Kexin Zhao 已提交
305
    def init_kernel_type(self):
306
        self.use_cudnn = True
K
Kexin Zhao 已提交
307 308 309 310 311 312 313 314 315 316 317 318


class TestFP16CUDNNCase3(TestCase2):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
319 320


321
class TestCUDNNCase4(TestCase3):
K
Kexin Zhao 已提交
322
    def init_kernel_type(self):
323
        self.use_cudnn = True
K
Kexin Zhao 已提交
324 325 326 327 328 329 330 331 332 333 334 335


class TestFP16CUDNNCase4(TestCase3):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
336 337


338
class TestCUDNNCase5(TestCase4):
K
Kexin Zhao 已提交
339
    def init_kernel_type(self):
340
        self.use_cudnn = True
K
Kexin Zhao 已提交
341 342 343 344 345 346 347 348 349 350 351 352


class TestFP16CUDNNCase5(TestCase4):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
353 354


355
class TestCUDNNCase6(TestCase5):
K
Kexin Zhao 已提交
356
    def init_kernel_type(self):
357
        self.use_cudnn = True
K
Kexin Zhao 已提交
358 359 360 361 362 363 364 365 366 367 368 369


class TestFP16CUDNNCase6(TestCase5):
    def init_kernel_type(self):
        self.use_cudnn = True
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
370

C
chengduoZH 已提交
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
class TestCeilModeCase1(TestCUDNNCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase2(TestCUDNNCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase3(TestCase1):
    def init_ceil_mode(self):
        self.ceil_mode = True


class TestCeilModeCase4(TestCase2):
    def init_ceil_mode(self):
        self.ceil_mode = True

391

392 393 394 395
class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

396

397 398 399 400
class TestCUDNNAvgInclude(TestCUDNNCase3):
    def init_exclusive(self):
        self.exclusive = False

401

402 403 404 405 406
class TestAvgPoolAdaptive(TestCase1):
    def init_adaptive(self):
        self.adaptive = True


C
chengduoZH 已提交
407 408
if __name__ == '__main__':
    unittest.main()