test_pool3d_op.py 35.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from __future__ import division
17

C
chengduoZH 已提交
18 19
import unittest
import numpy as np
20

21
import paddle.fluid.core as core
22
from op_test import OpTest
23
import paddle.fluid as fluid
C
chengduoZH 已提交
24 25


26 27 28 29 30 31 32 33
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def pool3D_forward_naive(x,
                         ksize,
                         strides,
                         paddings,
                         global_pool=0,
                         ceil_mode=False,
                         exclusive=True,
                         adaptive=False,
                         data_format='NCDHW',
                         pool_type='max',
                         padding_algorithm="EXPLICIT"):
    # update paddings
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    if isinstance(padding_algorithm, str):
        padding_algorithm = padding_algorithm.upper()
        if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
            raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                             "It can only be 'SAME' or 'VALID'." %
                             str(padding_algorithm))

        if padding_algorithm == "VALID":
            paddings = [0, 0, 0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)"
                    " must be False. "
                    "Received ceil_mode: True.")
        elif padding_algorithm == "SAME":
            input_data_shape = []
            if data_format == "NCDHW":
                input_data_shape = x.shape[2:5]
            elif data_format == "NDHWC":
                input_data_shape = x.shape[1:4]
            paddings = _get_padding_with_SAME(input_data_shape, ksize, strides)

    assert len(paddings) == 3 or len(paddings) == 6
    is_sys = True if len(paddings) == 3 else False

    N = x.shape[0]
    C,D, H, W = [x.shape[1], x.shape[2], x.shape[3], x.shape[4]] \
        if data_format == 'NCDHW' else [x.shape[4], x.shape[1], x.shape[2],x.shape[3]]

C
chengduoZH 已提交
88 89
    if global_pool == 1:
        ksize = [D, H, W]
90 91 92 93 94 95 96 97 98
        paddings = [0 for _ in range(len(paddings))]

    pad_d_forth = paddings[0] if is_sys else paddings[0]
    pad_d_back = paddings[0] if is_sys else paddings[1]
    pad_h_up = paddings[1] if is_sys else paddings[2]
    pad_h_down = paddings[1] if is_sys else paddings[3]
    pad_w_left = paddings[2] if is_sys else paddings[4]
    pad_w_right = paddings[2] if is_sys else paddings[5]

99 100 101
    if adaptive:
        D_out, H_out, W_out = ksize
    else:
102 103 104 105 106 107 108 109 110 111 112 113 114

        D_out = (D - ksize[0] + pad_d_forth+pad_d_back + strides[0] - 1) // strides[0] + 1 \
            if ceil_mode  else (D - ksize[0] + pad_d_forth+pad_d_back) // strides[0] + 1

        H_out = (H - ksize[1] + pad_h_up + pad_h_down + strides[1] - 1) // strides[1] + 1 \
            if ceil_mode else (H - ksize[1] + pad_h_up + pad_h_down) // strides[1] + 1

        W_out = (W - ksize[2] + pad_w_left + pad_w_right + strides[2] - 1) // strides[2] + 1 \
            if ceil_mode else (W - ksize[2] + pad_w_left + pad_w_right) // strides[2] + 1


    out = np.zeros((N, C, D_out, H_out, W_out)) if data_format=='NCDHW' \
        else np.zeros((N, D_out, H_out, W_out, C))
115
    for k in range(D_out):
116 117 118 119
        if adaptive:
            d_start = adaptive_start_index(k, D, ksize[0])
            d_end = adaptive_end_index(k, D, ksize[0])
        else:
120 121 122
            d_start = np.max((k * strides[0] - pad_d_forth, 0))
            d_end = np.min((k * strides[0] + ksize[0] - pad_d_forth, D))

123
        for i in range(H_out):
124 125 126 127
            if adaptive:
                h_start = adaptive_start_index(i, H, ksize[1])
                h_end = adaptive_end_index(i, H, ksize[1])
            else:
128 129 130
                h_start = np.max((i * strides[1] - pad_h_up, 0))
                h_end = np.min((i * strides[1] + ksize[1] - pad_h_up, H))

131
            for j in range(W_out):
132 133 134 135
                if adaptive:
                    w_start = adaptive_start_index(j, W, ksize[2])
                    w_end = adaptive_end_index(j, W, ksize[2])
                else:
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
                    w_start = np.max((j * strides[2] - pad_w_left, 0))
                    w_end = np.min((j * strides[2] + ksize[2] - pad_w_left, W))

                if data_format == 'NCDHW':
                    x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:
                                 w_end]
                    if pool_type == 'avg':
                        field_size = (d_end - d_start) * (h_end - h_start) * (w_end - w_start) \
                            if (exclusive or adaptive) else ksize[0] * ksize[1] * ksize[2]
                        out[:, :, k, i, j] = np.sum(x_masked,
                                                    axis=(2, 3, 4)) / field_size
                    elif pool_type == 'max':
                        out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))

                elif data_format == 'NDHWC':
                    x_masked = x[:, d_start:d_end, h_start:h_end, w_start:
                                 w_end, :]
                    if pool_type == 'avg':
                        field_size = (d_end - d_start) * (h_end - h_start) * (w_end - w_start) \
                            if (exclusive or adaptive) else ksize[0] * ksize[1] * ksize[2]
                        out[:, k, i, j, :] = np.sum(x_masked,
                                                    axis=(1, 2, 3)) / field_size
                    elif pool_type == 'max':
                        out[:, k, i, j, :] = np.max(x_masked, axis=(1, 2, 3))
C
chengduoZH 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    return out


def max_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=True,
                             adaptive=False):
    out = pool3D_forward_naive(
        x=x,
        ksize=ksize,
        strides=strides,
        paddings=paddings,
        global_pool=global_pool,
        ceil_mode=ceil_mode,
        exclusive=exclusive,
        adaptive=adaptive,
        data_format='NCDHW',
        pool_type="max")
C
chengduoZH 已提交
183 184 185
    return out


186 187 188 189 190
def avg_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
191
                             ceil_mode=False,
192 193
                             exclusive=True,
                             adaptive=False):
194 195 196 197 198 199 200 201 202 203 204
    out = pool3D_forward_naive(
        x=x,
        ksize=ksize,
        strides=strides,
        paddings=paddings,
        global_pool=global_pool,
        ceil_mode=ceil_mode,
        exclusive=exclusive,
        adaptive=adaptive,
        data_format='NCDHW',
        pool_type="avg")
C
chengduoZH 已提交
205 206 207 208 209
    return out


class TestPool3d_Op(OpTest):
    def setUp(self):
K
Kexin Zhao 已提交
210
        self.op_type = "pool3d"
211
        self.init_kernel_type()
K
Kexin Zhao 已提交
212
        self.dtype = np.float32
C
fix bug  
chengduoZH 已提交
213
        self.init_test_case()
C
chengduoZH 已提交
214
        self.init_global_pool()
K
Kexin Zhao 已提交
215
        self.init_kernel_type()
C
chengduoZH 已提交
216
        self.init_pool_type()
217
        self.init_ceil_mode()
218
        self.init_exclusive()
219
        self.init_adaptive()
220 221
        self.init_data_format()
        self.init_shape()
C
chengduoZH 已提交
222

K
Kexin Zhao 已提交
223
        input = np.random.random(self.shape).astype(self.dtype)
224
        output = pool3D_forward_naive(
225
            input, self.ksize, self.strides, self.paddings, self.global_pool,
226 227 228
            self.ceil_mode, self.exclusive, self.adaptive, self.data_format,
            self.pool_type).astype(self.dtype)

K
Kexin Zhao 已提交
229
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
230 231 232 233 234

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
235 236
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
237
            'use_cudnn': self.use_cudnn,
238
            'ceil_mode': self.ceil_mode,
239
            'data_format': self.data_format,
240 241
            'exclusive': self.exclusive,
            'adaptive': self.adaptive
C
chengduoZH 已提交
242 243
        }

K
Kexin Zhao 已提交
244
        self.outputs = {'Out': output}
C
chengduoZH 已提交
245

246
    def has_cudnn(self):
247 248
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
249
    def test_check_output(self):
250
        if self.has_cudnn():
251 252 253 254
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
255 256

    def test_check_grad(self):
K
Kexin Zhao 已提交
257 258
        if self.dtype == np.float16:
            return
259
        if self.has_cudnn() and self.pool_type != "max":
260 261 262 263
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
264
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
265

266 267 268 269
    def init_data_format(self):
        self.data_format = "NCDHW"

    def init_shape(self):
C
chengduoZH 已提交
270
        self.shape = [2, 3, 5, 5, 5]
271 272

    def init_test_case(self):
C
chengduoZH 已提交
273 274 275 276
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [0, 0, 0]

K
Kexin Zhao 已提交
277
    def init_kernel_type(self):
278 279
        self.use_cudnn = False
        #pass
C
chengduoZH 已提交
280 281 282 283 284 285 286

    def init_pool_type(self):
        self.pool_type = "avg"

    def init_global_pool(self):
        self.global_pool = True

287 288 289
    def init_ceil_mode(self):
        self.ceil_mode = False

290
    def init_exclusive(self):
291
        self.exclusive = True
292

293 294 295
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
296 297

class TestCase1(TestPool3d_Op):
298
    def init_shape(self):
C
chengduoZH 已提交
299
        self.shape = [2, 3, 7, 7, 7]
300 301

    def init_test_case(self):
C
chengduoZH 已提交
302 303
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
C
chengduoZH 已提交
304
        self.paddings = [0, 0, 0]
C
chengduoZH 已提交
305

C
chengduoZH 已提交
306
    def init_pool_type(self):
C
chengduoZH 已提交
307
        self.pool_type = "avg"
C
chengduoZH 已提交
308 309 310 311 312 313

    def init_global_pool(self):
        self.global_pool = False


class TestCase2(TestPool3d_Op):
314
    def init_shape(self):
C
chengduoZH 已提交
315
        self.shape = [2, 3, 7, 7, 7]
316 317

    def init_test_case(self):
C
chengduoZH 已提交
318 319 320 321
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
322 323 324 325 326 327
    def init_pool_type(self):
        self.pool_type = "avg"

    def init_global_pool(self):
        self.global_pool = False

C
chengduoZH 已提交
328 329

class TestCase3(TestPool3d_Op):
C
chengduoZH 已提交
330
    def init_pool_type(self):
C
chengduoZH 已提交
331 332 333
        self.pool_type = "max"


C
chengduoZH 已提交
334 335
class TestCase4(TestCase1):
    def init_pool_type(self):
C
chengduoZH 已提交
336
        self.pool_type = "max"
C
chengduoZH 已提交
337 338


C
chengduoZH 已提交
339 340
class TestCase5(TestCase2):
    def init_pool_type(self):
C
chengduoZH 已提交
341
        self.pool_type = "max"
C
chengduoZH 已提交
342 343


344
#--------------------test pool3d cudnn--------------------
K
Kexin Zhao 已提交
345 346


347 348 349 350 351 352
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
353

354 355 356
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOp")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
C
chengduoZH 已提交
357 358


359 360 361 362 363 364
create_test_cudnn_class(TestPool3d_Op)
create_test_cudnn_class(TestCase1)
create_test_cudnn_class(TestCase2)
create_test_cudnn_class(TestCase3)
create_test_cudnn_class(TestCase4)
create_test_cudnn_class(TestCase5)
K
Kexin Zhao 已提交
365 366


367 368 369 370 371 372 373
def create_test_cudnn_fp16_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
K
Kexin Zhao 已提交
374

375 376 377 378 379
        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
380

381 382 383
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16Op")
    TestCUDNNFp16Case.__name__ = cls_name
    globals()[cls_name] = TestCUDNNFp16Case
C
chengduoZH 已提交
384

K
Kexin Zhao 已提交
385

386 387 388 389 390 391
create_test_cudnn_fp16_class(TestPool3d_Op)
create_test_cudnn_fp16_class(TestCase1)
create_test_cudnn_fp16_class(TestCase2)
create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class(TestCase4)
create_test_cudnn_fp16_class(TestCase5)
K
Kexin Zhao 已提交
392 393


394 395 396 397 398 399 400
# ---- test ceil mode ------
def create_test_cudnn_use_ceil_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPool3DUseCeilCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
C
chengduoZH 已提交
401

402 403
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
404

405 406 407
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOpCeilMode")
    TestPool3DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool3DUseCeilCase
K
Kexin Zhao 已提交
408 409


410 411
create_test_cudnn_use_ceil_class(TestPool3d_Op)
create_test_cudnn_use_ceil_class(TestCase1)
K
Kexin Zhao 已提交
412

C
chengduoZH 已提交
413

414 415 416 417
def create_test_use_ceil_class(parent):
    class TestPool3DUseCeilCase(parent):
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
418

419 420 421
    cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast")
    TestPool3DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool3DUseCeilCase
K
Kexin Zhao 已提交
422 423


424 425
create_test_use_ceil_class(TestCase1)
create_test_use_ceil_class(TestCase2)
K
Kexin Zhao 已提交
426

427 428 429 430

class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False
C
chengduoZH 已提交
431 432


433 434 435
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude(TestCase2):
K
Kexin Zhao 已提交
436
    def init_kernel_type(self):
437
        self.use_cudnn = True
K
Kexin Zhao 已提交
438

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
    def init_exclusive(self):
        self.exclusive = False


class TestAvgPoolAdaptive(TestCase1):
    def init_adaptive(self):
        self.adaptive = True


#-------test pool3d with asymmetric padding------


class TestPool3d_Op_AsyPadding(TestPool3d_Op):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [0, 0, 0, 2, 3, 0]

    def init_shape(self):
        self.shape = [2, 3, 5, 5, 5]


class TestCase1_AsyPadding(TestCase1):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 0, 2, 1, 2, 1]

    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]


class TestCase2_AsyPadding(TestCase2):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 2, 1, 1, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]


class TestCase3_AsyPadding(TestCase3):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 0, 0, 0, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 5, 5, 5]
K
Kexin Zhao 已提交
489

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

class TestCase4_AsyPadding(TestCase4):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 0, 2, 1, 2, 1]

    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]


class TestCase5_AsyPadding(TestCase5):
    def init_test_case(self):
        self.shape = [2, 7, 7, 7, 3]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 2, 1, 1, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]


create_test_cudnn_class(TestPool3d_Op_AsyPadding)
create_test_cudnn_class(TestCase1_AsyPadding)
create_test_cudnn_class(TestCase2_AsyPadding)
create_test_cudnn_class(TestCase3_AsyPadding)
create_test_cudnn_class(TestCase4_AsyPadding)
create_test_cudnn_class(TestCase5_AsyPadding)

create_test_cudnn_fp16_class(TestPool3d_Op_AsyPadding)
create_test_cudnn_fp16_class(TestCase1_AsyPadding)
create_test_cudnn_fp16_class(TestCase2_AsyPadding)
create_test_cudnn_fp16_class(TestCase3_AsyPadding)
create_test_cudnn_fp16_class(TestCase4_AsyPadding)
create_test_cudnn_fp16_class(TestCase5_AsyPadding)

create_test_cudnn_use_ceil_class(TestPool3d_Op_AsyPadding)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding)

create_test_use_ceil_class(TestCase1_AsyPadding)
create_test_use_ceil_class(TestCase2_AsyPadding)


class TestAvgInclude_AsyPadding(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 2, 1, 1, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_AsyPadding(TestCase2):
K
Kexin Zhao 已提交
549 550 551
    def init_kernel_type(self):
        self.use_cudnn = True

552 553
    def init_exclusive(self):
        self.exclusive = False
C
chengduoZH 已提交
554

555 556 557 558
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 0, 0, 0, 0, 0]
C
chengduoZH 已提交
559

560 561
    def init_shape(self):
        self.shape = [2, 3, 5, 5, 5]
562 563


564 565 566
class TestAvgPoolAdaptive_AsyPadding(TestCase1):
    def init_adaptive(self):
        self.adaptive = True
567

568 569 570 571
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 0, 2, 1, 2, 1]
572

573 574
    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]
575 576


577 578 579 580
# ------------ test channel_last --------------
class TestPool3d_channel_last(TestPool3d_Op):
    def init_data_format(self):
        self.data_format = "NDHWC"
581

582 583
    def init_shape(self):
        self.shape = [2, 5, 5, 5, 3]
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667

class TestCase1_channel_last(TestCase1):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


class TestCase2_channel_last(TestCase2):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


class TestCase3_channel_last(TestCase3):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 5, 3]


class TestCase4_channel_last(TestCase4):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


class TestCase5_channel_last(TestCase5):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


create_test_cudnn_class(TestPool3d_channel_last)
create_test_cudnn_class(TestCase1_channel_last)
create_test_cudnn_class(TestCase2_channel_last)
create_test_cudnn_class(TestCase3_channel_last)
create_test_cudnn_class(TestCase4_channel_last)
create_test_cudnn_class(TestCase5_channel_last)

create_test_cudnn_use_ceil_class(TestPool3d_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_channel_last)

create_test_use_ceil_class(TestCase1_channel_last)
create_test_use_ceil_class(TestCase2_channel_last)


class TestCase5_Max(TestCase2):
    def init_pool_type(self):
        self.pool_type = "max"

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        if self.has_cudnn() and self.pool_type == "max":
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=1.00)
        elif self.pool_type == "max":
            self.check_grad(set(['X']), 'Out', max_relative_error=1.00)


class TestCase5_channel_last_Max(TestCase5_Max):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


create_test_cudnn_class(TestCase5_Max)
create_test_cudnn_class(TestCase5_channel_last_Max)


class TestAvgInclude_channel_last(TestCase2_channel_last):
668 669 670
    def init_exclusive(self):
        self.exclusive = False

671

672 673 674 675 676 677
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_channel_last(TestCase2_channel_last):
    def init_kernel_type(self):
        self.use_cudnn = True

678 679 680
    def init_exclusive(self):
        self.exclusive = False

681

682
class TestAvgPoolAdaptive_channel_last(TestCase1_channel_last):
683 684 685 686
    def init_adaptive(self):
        self.adaptive = True


687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
# --- asy padding
class TestPool3d_Op_AsyPadding_channel_last(TestPool3d_Op_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 5, 3]


class TestCase1_AsyPadding_channel_last(TestCase1_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


class TestCase2_AsyPadding_channel_last(TestCase2_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


class TestCase3_AsyPadding_channel_last(TestCase3_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 5, 3]


class TestCase4_AsyPadding_channel_last(TestCase4_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


class TestCase5_AsyPadding_channel_last(TestCase5_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


create_test_cudnn_class(TestPool3d_Op_AsyPadding_channel_last)
create_test_cudnn_class(TestCase1_AsyPadding_channel_last)
create_test_cudnn_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_class(TestCase5_AsyPadding_channel_last)

create_test_cudnn_use_ceil_class(TestPool3d_Op_AsyPadding_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding_channel_last)

create_test_use_ceil_class(TestCase1_AsyPadding_channel_last)
create_test_use_ceil_class(TestCase2_AsyPadding_channel_last)


class TestAvgInclude_AsyPadding_channel_last(TestAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_AsyPadding_channel_last(
        TestCUDNNAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 5, 5, 5, 3]


class TestAvgPoolAdaptive_AsyPadding_channel_last(
        TestAvgPoolAdaptive_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


#test padding = SAME VALID


def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
            self.paddings = [0, 0]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


create_test_padding_SAME_class(TestPool3d_Op)
create_test_padding_SAME_class(TestCase1)
create_test_padding_SAME_class(TestCase2)
create_test_padding_SAME_class(TestCase3)
create_test_padding_SAME_class(TestCase4)
create_test_padding_SAME_class(TestCase5)

create_test_padding_SAME_class(TestPool3d_channel_last)
create_test_padding_SAME_class(TestCase1_channel_last)
create_test_padding_SAME_class(TestCase2_channel_last)
create_test_padding_SAME_class(TestCase3_channel_last)
create_test_padding_SAME_class(TestCase4_channel_last)
create_test_padding_SAME_class(TestCase5_channel_last)


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


create_test_cudnn_padding_SAME_class(TestPool3d_Op)
create_test_cudnn_padding_SAME_class(TestCase1)
create_test_cudnn_padding_SAME_class(TestCase2)
create_test_cudnn_padding_SAME_class(TestCase3)
create_test_cudnn_padding_SAME_class(TestCase4)
create_test_cudnn_padding_SAME_class(TestCase5)

create_test_cudnn_padding_SAME_class(TestPool3d_channel_last)
create_test_cudnn_padding_SAME_class(TestCase1_channel_last)
create_test_cudnn_padding_SAME_class(TestCase2_channel_last)
create_test_cudnn_padding_SAME_class(TestCase3_channel_last)
create_test_cudnn_padding_SAME_class(TestCase4_channel_last)
create_test_cudnn_padding_SAME_class(TestCase5_channel_last)


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


create_test_padding_VALID_class(TestPool3d_Op)
create_test_padding_VALID_class(TestCase1)
create_test_padding_VALID_class(TestCase2)
create_test_padding_VALID_class(TestCase3)
create_test_padding_VALID_class(TestCase4)
create_test_padding_VALID_class(TestCase5)

create_test_padding_VALID_class(TestPool3d_channel_last)
create_test_padding_VALID_class(TestCase1_channel_last)
create_test_padding_VALID_class(TestCase2_channel_last)
create_test_padding_VALID_class(TestCase3_channel_last)
create_test_padding_VALID_class(TestCase4_channel_last)
create_test_padding_VALID_class(TestCase5_channel_last)


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
            self.paddings = [1, 1]
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


create_test_cudnn_padding_VALID_class(TestPool3d_Op)
create_test_cudnn_padding_VALID_class(TestCase1)
create_test_cudnn_padding_VALID_class(TestCase2)
create_test_cudnn_padding_VALID_class(TestCase3)
create_test_cudnn_padding_VALID_class(TestCase4)
create_test_cudnn_padding_VALID_class(TestCase5)

create_test_cudnn_padding_VALID_class(TestPool3d_channel_last)
create_test_cudnn_padding_VALID_class(TestCase1_channel_last)
create_test_cudnn_padding_VALID_class(TestCase2_channel_last)
create_test_cudnn_padding_VALID_class(TestCase3_channel_last)
create_test_cudnn_padding_VALID_class(TestCase4_channel_last)
create_test_cudnn_padding_VALID_class(TestCase5_channel_last)


#test API
class TestPool3dAPI(OpTest):
    def test_api(self):
        x_NDHWC = np.random.random([2, 5, 5, 5, 3]).astype("float32")
        x_NCDHW = np.random.random([2, 3, 5, 5, 5]).astype("float32")

        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCDHW = fluid.layers.data(
            name="input_NCDHW",
            shape=[2, 3, 5, 5, 5],
            append_batch_size=False,
            dtype="float32")

        ksize = [3, 3, 3]
        out_1 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="max",
            pool_padding=[1, 1, 1],
            use_cudnn=False,
            data_format="NDHWC")

        out_2 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]],
            use_cudnn=False,
            data_format="NDHWC")

        out_3 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [0, 0], [1, 1], [1, 1], [1, 1]],
            use_cudnn=False,
            data_format="NCDHW")

        out_4 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[1, 2, 1, 0, 0, 1],
            use_cudnn=False,
            data_format="NCDHW")
        # test VALID
        out_5 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NDHWC")

        out_6 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NCDHW")

        # test SAME
        out_7 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NDHWC")

        out_8 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=[4, 4, 4],
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NCDHW")

        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8] = exe.run(
            fluid.default_main_program(),
            feed={"input_NDHWC": x_NDHWC,
                  "input_NCDHW": x_NCDHW},
            fetch_list=[
                out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8
            ])

        assert np.allclose(
            res_1,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="max",
                strides=[1, 1, 1],
                paddings=[1, 1, 1],
                data_format="NDHWC"))

        assert np.allclose(
            res_2,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 1, 1, 1, 1, 1],
                data_format="NDHWC"))
        assert np.allclose(
            res_3,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 1, 1, 1, 1, 1],
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)

        assert np.allclose(
            res_4,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 2, 1, 0, 0, 1],
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)
        # VALID
        assert np.allclose(
            res_5,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NDHWC"))

        assert np.allclose(
            res_6,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)
        # SAME
        assert np.allclose(
            res_7,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NDHWC"))

        assert np.allclose(
            res_8,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=[4, 4, 4],
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)


class TestPool3dAPI_Error(OpTest):
    def test_api(self):
        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")
        ksize = [3, 3, 3]

        # cudnn value error
        def run_1():
            out_1 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1, 1],
                use_cudnn=[0],
                data_format="NDHWC")

        self.assertRaises(ValueError, run_1)

        # data_format value error
        def run_2():
            out_2 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1, 1],
                use_cudnn=False,
                data_format="NDHWCC")

        self.assertRaises(ValueError, run_2)

        # padding str value error
        def run_3():
            out_3 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALIDSAME",
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_3)

        # padding str valid and ceil_mode value error
        def run_4():
            out_4 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALID",
                use_cudnn=False,
                ceil_mode=True,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_4)

        # padding with 8 ele. value error
        def run_5():
            out_5 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[[1, 1], [0, 0], [0, 0], [1, 1], [1, 1]],
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_5)


C
chengduoZH 已提交
1151 1152
if __name__ == '__main__':
    unittest.main()