learning_rate_scheduler.py 44.6 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15
import math
16
import warnings
zhouweiwei2014's avatar
zhouweiwei2014 已提交
17
import numpy as np
M
minqiyang 已提交
18

H
HongyuJia 已提交
19
import paddle
M
minqiyang 已提交
20
from .. import unique_name
21 22
from ..framework import Variable
from ..data_feeder import check_type
M
minqiyang 已提交
23

24
__all__ = [
25 26 27 28 29 30 31 32 33 34 35 36
    'NoamDecay',
    'PiecewiseDecay',
    'NaturalExpDecay',
    'ExponentialDecay',
    'InverseTimeDecay',
    'PolynomialDecay',
    'CosineDecay',
    'LinearLrWarmup',
    'ReduceLROnPlateau',
    'StepDecay',
    'MultiStepDecay',
    'LambdaDecay',
37
]
M
minqiyang 已提交
38 39


40
class LearningRateDecay:
M
minqiyang 已提交
41 42
    """
    Base class of learning rate decay
43

44 45 46
    Define the common interface of an LearningRateDecay.
    User should not use this class directly,
    but need to use one of it's implementation.
M
minqiyang 已提交
47 48
    """

M
minqiyang 已提交
49 50 51
    def __init__(self, begin=0, step=1, dtype='float32'):
        self.step_num = begin
        self.step_size = step
M
minqiyang 已提交
52 53 54 55 56
        self.dtype = dtype

    def __call__(self):
        lr = self.step()
        if isinstance(lr, float):
M
minqiyang 已提交
57
            lr = self.create_lr_var(lr)
M
minqiyang 已提交
58
        self.step_num += self.step_size
M
minqiyang 已提交
59 60
        return lr

M
minqiyang 已提交
61
    def create_lr_var(self, lr):
62 63 64
        """
        convert lr from float to variable

65
        Args:
66 67 68 69
            lr: learning rate
        Returns:
            learning rate variable
        """
M
minqiyang 已提交
70
        from .. import layers
71

72
        lr = paddle.static.create_global_var(
M
minqiyang 已提交
73 74 75 76
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(lr),
            dtype=self.dtype,
77 78
            persistable=False,
        )
M
minqiyang 已提交
79
        return lr
M
minqiyang 已提交
80

81
    # Note: If you want to change what optimizer.state_dict stores, just overwrite this functions,
82
    # "self.step_num" will be stored by default.
83 84 85 86 87 88 89 90 91 92 93 94 95
    def state_dict(self):
        """
        Returns the state of the scheduler as a :class:`dict`.

        It is a subset of self.__dict__ .
        """
        self._state_keys()
        state_dict = {}
        for key in self.keys:
            if key not in self.__dict__:
                continue
            value = self.__dict__[key]
            if isinstance(value, Variable):
96 97
                assert (
                    value.size == 1
98 99 100 101
                ), "the size of Variable in state_dict must be 1, but its size is {} with shape {}".format(
                    value.size, value.shape
                )
                value = value.item()
102 103 104 105 106 107 108 109 110 111
            state_dict[key] = value

        return state_dict

    def _state_keys(self):
        """
        set the keys in self.__dict__ that are needed to be saved.
        """
        self.keys = ['step_num']

112
    def set_state_dict(self, state_dict):
113 114 115 116 117 118 119 120 121
        """
        Loads the schedulers state.
        """
        self._state_keys()
        for key in self.keys:
            if key in state_dict:
                self.__dict__[key] = state_dict[key]
            else:
                raise RuntimeError(
122 123 124 125
                    "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict".format(
                        key
                    )
                )
126 127 128 129 130
        if len(state_dict) > len(self.keys):
            warnings.warn(
                "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
            )

131 132 133
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

M
minqiyang 已提交
134 135 136 137
    def step(self):
        raise NotImplementedError()


M
minqiyang 已提交
138
class PiecewiseDecay(LearningRateDecay):
139
    """
140
    :api_attr: imperative
141

D
DuYao 已提交
142
    Piecewise decay scheduler.
143 144 145 146 147

    The algorithm can be described as the code below.

    .. code-block:: text

D
DuYao 已提交
148 149 150 151 152 153 154 155 156 157
        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if global_step < 10000:
            learning_rate = 1.0
        elif 10000 <= global_step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Parameters:
158
        boundaries(list): A list of steps numbers. The type of element in the list is python int.
D
DuYao 已提交
159 160
        values(list): A list of learning rate values that will be picked during
            different step boundaries. The type of element in the list is python float.
T
tianshuo78520a 已提交
161
        begin(int): The begin step to initialize the global_step in the description above.
D
DuYao 已提交
162
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
163
            The default value is 1.
D
DuYao 已提交
164 165
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
166

167
    Returns:
D
DuYao 已提交
168
        None.
169

170 171 172 173
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
174
          import paddle
175 176 177
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          with fluid.dygraph.guard():
178
              emb = paddle.nn.Embedding(10, 10)
179
              optimizer = fluid.optimizer.SGD(
180 181
                 learning_rate=fluid.dygraph.PiecewiseDecay(boundaries, values, 0),
                 parameter_list = emb.parameters() )
182 183
    """

M
minqiyang 已提交
184
    def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
185
        super().__init__(begin, step, dtype)
M
minqiyang 已提交
186 187 188 189 190
        self.boundaries = boundaries
        self.values = values

        self.vars = []
        for value in values:
191
            self.vars.append(value)
M
minqiyang 已提交
192 193

    def step(self):
M
minqiyang 已提交
194 195
        for i in range(len(self.boundaries)):
            if self.step_num < self.boundaries[i]:
M
minqiyang 已提交
196
                return self.vars[i]
197
        return self.create_lr_var(self.vars[len(self.values) - 1])
198 199 200


class NaturalExpDecay(LearningRateDecay):
201
    r"""
202 203
    :api_attr: imperative

204
    Applies natural exponential decay to the initial learning rate.
205

D
DuYao 已提交
206
    The algorithm can be described as following.
207

D
DuYao 已提交
208 209
    .. math::

210
        decayed\_learning\_rate = learning\_rate * e^{y}
D
DuYao 已提交
211 212 213 214 215 216 217 218 219 220 221

    If staircase is set to False, then:

    .. math::

        y = - decay\_rate * \\frac{global\_step}{decay\_steps}

    If staircase is set to True, then:

    .. math::

222
        y = - decay\_rate * math.floor(\\frac{global\_step}{decay\_steps})
D
DuYao 已提交
223 224

    Parameters:
225 226
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
227 228 229
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(int): The decay rate.
230
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
231 232 233
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
234
            The default value is 1.
D
DuYao 已提交
235 236
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
237

238
    Returns:
D
DuYao 已提交
239
        None.
240

241 242 243
    Examples:
        .. code-block:: python

244
            import paddle.fluid as fluid
245
            import paddle
246 247
            base_lr = 0.1
            with fluid.dygraph.guard():
248
                emb = paddle.nn.Embedding(10, 10)
249 250 251 252 253 254 255
                sgd_optimizer = fluid.optimizer.SGD(
                        learning_rate=fluid.dygraph.NaturalExpDecay(
                            learning_rate=base_lr,
                            decay_steps=10000,
                            decay_rate=0.5,
                            staircase=True),
                        parameter_list=emb.parameters())
256 257 258

    """

259 260 261 262 263 264 265 266 267 268
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
269
        super().__init__(begin, step, dtype)
270 271 272 273 274 275 276 277
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
278 279
            div_res = paddle.floor(div_res)
        decayed_lr = self.learning_rate * paddle.exp(
280 281
            -1 * self.decay_rate * div_res
        )
282 283 284 285 286

        return decayed_lr


class ExponentialDecay(LearningRateDecay):
287
    r"""
288 289
    :api_attr: imperative

290 291
    Applies exponential decay to the learning rate.

D
DuYao 已提交
292
    The algorithm can be described as following.
293

D
DuYao 已提交
294
    .. math::
295

296
        decayed\_learning\_rate = learning\_rate * decay\_rate ^ y
D
DuYao 已提交
297 298 299 300 301

    If staircase is set to False, then:

    .. math::

302
        y = \\frac{global\_step}{decay\_steps}
D
DuYao 已提交
303 304 305 306 307 308 309 310 311

    If staircase is set to True, then:

    .. math::

        y = math.floor(\\frac{global\_step}{decay\_steps})


    Parameters:
312 313
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
314 315 316
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
317
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
318 319 320
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
321
            The default value is 1.
D
DuYao 已提交
322 323
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
324

325
    Returns:
D
DuYao 已提交
326
        None.
327

328 329 330 331 332 333 334
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
              sgd_optimizer = fluid.optimizer.SGD(
335 336 337 338 339
                    learning_rate=fluid.dygraph.ExponentialDecay(
                        learning_rate=base_lr,
                        decay_steps=10000,
                        decay_rate=0.5,
                        staircase=True))
340 341 342

    """

343 344 345 346 347 348 349 350 351 352
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
353
        super().__init__(begin, step, dtype)
354 355 356 357 358 359 360 361
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
362
            div_res = paddle.floor(div_res)
363 364 365 366 367 368 369

        decayed_lr = self.learning_rate * (self.decay_rate**div_res)

        return decayed_lr


class InverseTimeDecay(LearningRateDecay):
370
    r"""
371 372
    :api_attr: imperative

373 374
    Applies inverse time decay to the initial learning rate.

D
DuYao 已提交
375 376 377 378 379
    The algorithm can be described as following.
    If staircase is set to False, then:

    .. math::

380
        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * \\frac{global\_step}{decay\_step}}
D
DuYao 已提交
381 382 383 384 385 386 387 388

    If staircase is set to True, then:

    .. math::

        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * math.floor(\\frac{global\_step}{decay\_step})}

    Parameters:
389 390
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
391 392 393
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
394
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
395 396 397
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
398
            The default value is 1.
399
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be
D
DuYao 已提交
400
            'float32', 'float64'. The default value is 'float32'.
401

402
    Returns:
D
DuYao 已提交
403
        None.
404

405 406 407 408
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
409
          import paddle
410 411
          base_lr = 0.1
          with fluid.dygraph.guard():
412
              emb = paddle.nn.Embedding(10, 10)
413
              sgd_optimizer = fluid.optimizer.SGD(
414 415 416 417 418
                  learning_rate=fluid.dygraph.InverseTimeDecay(
                        learning_rate=base_lr,
                        decay_steps=10000,
                        decay_rate=0.5,
                        staircase=True),
419
                  parameter_list = emb.parameters())
420 421 422

    """

423 424 425 426 427 428 429 430 431 432
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
433
        super().__init__(begin, step, dtype)
434 435 436 437 438 439 440 441
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
442
            div_res = paddle.floor(div_res)
443 444 445 446 447 448 449

        decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)

        return decayed_lr


class PolynomialDecay(LearningRateDecay):
450
    r"""
451 452
    :api_attr: imperative

453 454
    Applies polynomial decay to the initial learning rate.

D
DuYao 已提交
455 456 457 458 459 460
    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

461
        decay\_steps & = decay\_steps * math.ceil(\\frac{global\_step}{decay\_steps})
462

D
DuYao 已提交
463 464 465 466 467 468
        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    If cycle is set to False, then:

    .. math::

469
        global\_step & = min(global\_step, decay\_steps)
D
DuYao 已提交
470 471 472 473

        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    Parameters:
474 475
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
476
            float32 or float64. It also can be set to python int number.
477
        decay_steps(int): The decay step size. It determines the decay cycle.
D
DuYao 已提交
478 479 480 481 482
        end_learning_rate(float, optional): The minimum final learning rate. The default value is 0.0001.
        power(float, optional): Power of polynomial. The default value is 1.0.
        cycle(bool, optional): If set true, decay the learning rate every decay_steps. The default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
483
            The default value is 1.
D
DuYao 已提交
484 485
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
486

487
    Returns:
D
DuYao 已提交
488
        None.
489

490 491 492 493
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
494
          import paddle
495 496 497 498
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          with fluid.dygraph.guard():
499
              emb = paddle.nn.Embedding(10, 10)
500 501
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.PolynomialDecay(
502 503
                  start_lr, total_step, end_lr, power=1.0),
                  parameter_list = emb.parameters())
504 505 506

    """

507 508 509 510 511 512 513 514 515 516 517
    def __init__(
        self,
        learning_rate,
        decay_steps,
        end_learning_rate=0.0001,
        power=1.0,
        cycle=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
518
        super().__init__(begin, step, dtype)
519 520 521 522 523 524 525
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.end_learning_rate = end_learning_rate
        self.power = power
        self.cycle = cycle

    def step(self):
M
minqiyang 已提交
526 527
        tmp_step_num = self.step_num
        tmp_decay_steps = self.decay_steps
528
        if self.cycle:
529
            div_res = paddle.ceil(
530 531
                self.create_lr_var(tmp_step_num / float(self.decay_steps))
            )
532

M
minqiyang 已提交
533 534
            if tmp_step_num == 0:
                div_res = self.create_lr_var(1.0)
M
minqiyang 已提交
535
            tmp_decay_steps = self.decay_steps * div_res
536
        else:
537
            tmp_step_num = self.create_lr_var(
538 539 540 541
                tmp_step_num
                if tmp_step_num < self.decay_steps
                else self.decay_steps
            )
M
minqiyang 已提交
542

543 544 545
        decayed_lr = (self.learning_rate - self.end_learning_rate) * (
            (1 - tmp_step_num / tmp_decay_steps) ** self.power
        ) + self.end_learning_rate
M
minqiyang 已提交
546
        return decayed_lr
547

M
minqiyang 已提交
548 549

class CosineDecay(LearningRateDecay):
550
    r"""
551 552
    :api_attr: imperative

553 554
    Applies cosine decay to the learning rate.

D
DuYao 已提交
555
    The algorithm can be described as following.
556 557 558

    .. math::

D
DuYao 已提交
559
        decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step * \\frac{math.pi}{step\_each\_epoch} ) + 1)
560

D
DuYao 已提交
561
    Parameters:
562 563
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
564 565 566 567 568
            float32 or float64. It also can be set to python int number.
        step_each_epoch(int): The number of steps in an epoch.
        epochs(int): The number of epochs.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
569
            The default value is 1.
D
DuYao 已提交
570 571
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
572

573
    Returns:
D
DuYao 已提交
574
        None.
575

576
    Examples:
577
        .. code-block:: python
578

579
            base_lr = 0.1
580 581
            with fluid.dygraph.guard():
                optimizer  = fluid.optimizer.SGD(
582 583
                    learning_rate = fluid.dygraph.CosineDecay(
                            base_lr, 10000, 120) )
584 585
    """

586 587 588 589 590 591 592 593 594
    def __init__(
        self,
        learning_rate,
        step_each_epoch,
        epochs,
        begin=0,
        step=1,
        dtype='float32',
    ):
595
        super().__init__(begin, step, dtype)
M
minqiyang 已提交
596 597 598 599 600
        self.learning_rate = learning_rate
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs

    def step(self):
601
        cur_epoch = paddle.floor(
602 603 604 605 606
            self.create_lr_var(self.step_num / self.step_each_epoch)
        )
        decayed_lr = (
            self.learning_rate
            * 0.5
607
            * (paddle.cos(cur_epoch * math.pi / self.epochs) + 1)
608
        )
M
minqiyang 已提交
609 610 611 612
        return decayed_lr


class NoamDecay(LearningRateDecay):
613
    r"""
614 615
    :api_attr: imperative

616
    Applies Noam decay to the initial learning rate.
D
DuYao 已提交
617 618 619 620 621

    The algorithm can be described as following.

    .. math::

622
        decayed\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
D
DuYao 已提交
623

624
    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
D
DuYao 已提交
625 626

    Parameters:
627
        d$_{model}$(Variable|int): The dimensionality of input and output feature vector of model. If type is Variable,
D
DuYao 已提交
628
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
629
        warmup_steps(Variable|int): The number of warmup steps. A super parameter. If type is Variable,
D
DuYao 已提交
630 631 632
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
633
            The default value is 1.
D
DuYao 已提交
634 635
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
636 637 638
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0
639

640
    Returns:
D
DuYao 已提交
641
        None.
642

643 644 645 646
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
647
          import paddle
648 649 650
          warmup_steps = 100
          learning_rate = 0.01
          with fluid.dygraph.guard():
651
              emb = paddle.nn.Embedding(10, 10)
652 653 654
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.NoamDecay(
                         1/(warmup_steps *(learning_rate ** 2)),
655 656
                         warmup_steps),
                  parameter_list = emb.parameters())
657 658
    """

659 660 661 662 663 664 665 666 667
    def __init__(
        self,
        d_model,
        warmup_steps,
        begin=1,
        step=1,
        dtype='float32',
        learning_rate=1.0,
    ):
668
        super().__init__(begin, step, dtype)
669
        self.learning_rate = learning_rate
M
minqiyang 已提交
670 671 672 673 674
        self.d_model = d_model
        self.warmup_steps = warmup_steps

    def step(self):
        from .. import layers
675

M
minqiyang 已提交
676 677
        a = self.create_lr_var(self.step_num**-0.5)
        b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
678
        lr_value = (
679
            self.learning_rate * (self.d_model**-0.5) * paddle.minimum(a, b)
680
        )
M
minqiyang 已提交
681
        return lr_value
H
hong 已提交
682 683 684 685


class LinearLrWarmup(LearningRateDecay):
    """
686 687
    :api_attr: imperative

H
hong 已提交
688 689
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
690

H
hong 已提交
691
    When global_step < warmup_steps, learning rate is updated as:
692

H
hong 已提交
693
    .. code-block:: text
694

H
hong 已提交
695 696
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
697

H
hong 已提交
698
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
699

H
hong 已提交
700
    When global_step >= warmup_steps, learning rate is updated as:
701

H
hong 已提交
702
    .. code-block:: text
703

H
hong 已提交
704
            lr = learning_rate
705

H
hong 已提交
706
    where lr is the learning_rate after warm-up.
707

H
hong 已提交
708 709 710 711 712 713 714
    Args:
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
715
            The default value is 1.
H
hong 已提交
716 717
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
718

H
hong 已提交
719 720
    Returns:
        Variable: Warm-up learning rate with the same data type as learning_rate.
721 722


H
hong 已提交
723
    Examples:
724

H
hong 已提交
725
    .. code-block:: python
726

H
hong 已提交
727
        import paddle.fluid as fluid
728 729

        learning_rate = 0.1
H
hong 已提交
730
        warmup_steps = 50
731
        start_lr = 0
H
hong 已提交
732 733
        end_lr = 0.1

734
        with fluid.dygraph.guard():
H
hong 已提交
735
            lr_decay = fluid.dygraph.LinearLrWarmup( learning_rate, warmup_steps, start_lr, end_lr)
736 737


H
hong 已提交
738 739
    """

740 741 742 743 744 745 746 747 748 749
    def __init__(
        self,
        learning_rate,
        warmup_steps,
        start_lr,
        end_lr,
        begin=1,
        step=1,
        dtype='float32',
    ):
750
        super().__init__(begin, step, dtype)
751 752 753 754 755
        type_check = (
            isinstance(learning_rate, float)
            or isinstance(learning_rate, int)
            or isinstance(learning_rate, LearningRateDecay)
        )
H
hong 已提交
756 757
        if not type_check:
            raise TypeError(
758 759 760 761
                "the type of learning_rate should be [int, float or LearningRateDecay], the current type is {}".format(
                    learning_rate
                )
            )
H
hong 已提交
762 763
        self.learning_rate = learning_rate
        self.warmup_steps = warmup_steps
764
        self.start_lr = start_lr
765 766 767 768 769 770
        assert (
            end_lr > start_lr
        ), "end_lr {} must be greater than start_lr {}".format(end_lr, start_lr)
        self.lr_ratio_before_warmup = (float(end_lr) - float(start_lr)) / float(
            warmup_steps
        )
H
hong 已提交
771 772 773 774 775 776 777

    def step(self):
        base_lr = self.learning_rate
        if isinstance(self.learning_rate, LearningRateDecay):
            base_lr = base_lr()

        from .. import layers
778

H
hong 已提交
779
        if self.step_num < self.warmup_steps:
780
            return self.lr_ratio_before_warmup * self.step_num + self.start_lr
H
hong 已提交
781 782
        else:
            return base_lr
783 784 785 786


class ReduceLROnPlateau(LearningRateDecay):
    """
787 788
    :api_attr: imperative

789
    Reduce learning rate when ``loss`` has stopped descending. Models often benefit from reducing the learning rate
790 791
    by 2 to 10 times once model performance has no longer improvement.

792
    The ``loss`` is the one which has been pass into ``step`` , it must be 0-D Tensor with shape []. When ``loss``
793 794
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * decay_rate`` .
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``loss`` stop ascending for a ``patience`` number
795 796 797 798 799 800 801
    of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming normal operation.

    Args:
        learning_rate (Variable|float|int): The initial learning rate. It can be set to python float or int number.
            If the type is Variable, it should be 1-D Tensor with shape [1], the data type can be 'float32' or 'float64'.
802 803
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning
804
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
805
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
806
            It should be less than 1.0. Default: 0.1.
807
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
808 809
            Default: 10.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.
810
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
811 812
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
813
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
814 815 816 817 818 819
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
        eps (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is
            ignored. Default: 1e-8.
        dtype (str, optional): The data type used to create the learning rate variable. The data type can be set as
820 821
            'float32', 'float64'. Default: 'float32'.

822 823 824 825
    Returns:
        Reduced learning rate.

    Examples:
826

827 828 829
    .. code-block:: python

        import paddle.fluid as fluid
830
        import paddle
831 832 833 834
        import numpy as np

        with fluid.dygraph.guard():
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
835
            linear = paddle.nn.Linear(10, 10)
836 837 838 839 840 841
            input = fluid.dygraph.to_variable(x)

            reduce_lr = fluid.dygraph.ReduceLROnPlateau(
                                    learning_rate = 1.0,
                                    decay_rate = 0.5,
                                    patience = 5,
842
                                    verbose = True,
843 844 845 846 847 848 849 850 851
                                    cooldown = 3)
            adam = fluid.optimizer.Adam(
                learning_rate = reduce_lr,
                parameter_list = linear.parameters())

            for epoch in range(10):
                total_loss = 0
                for bath_id in range(5):
                    out = linear(input)
852
                    loss = paddle.mean(out)
853 854
                    total_loss += loss
                    adam.minimize(loss)
855

856 857 858 859 860
                avg_loss = total_loss/5

                # adjust learning rate according to avg_loss
                reduce_lr.step(avg_loss)
                lr = adam.current_step_lr()
861
                print("current avg_loss is %s, current lr is %s" % (float(avg_loss), lr))
862 863 864

    """

865 866 867 868 869 870 871 872 873 874 875 876 877 878
    def __init__(
        self,
        learning_rate,
        mode='min',
        decay_rate=0.1,
        patience=10,
        verbose=False,
        threshold=1e-4,
        threshold_mode='rel',
        cooldown=0,
        min_lr=0,
        eps=1e-8,
        dtype='float32',
    ):
879
        super().__init__(dtype=dtype)
880 881 882 883 884 885 886 887 888
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode ' + mode + ' is unknown!')
        self.mode = mode

        if decay_rate >= 1.0:
            raise ValueError(
                'new_lr = origin_lr * decay_rate and decay_rate should be < 1.0.'
            )
889
        self.decay_rate = self.create_lr_var(decay_rate)
890 891 892

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
893 894 895
            raise ValueError(
                'threshold mode ' + threshold_mode + ' is unknown!'
            )
896
        self.threshold_mode = threshold_mode
897 898 899 900 901 902
        check_type(
            learning_rate,
            'learning_rate',
            (float, int, Variable),
            'ReduceLROnPlateau',
        )
903 904 905
        if not isinstance(learning_rate, (float, int, Variable)):
            raise TypeError(
                "The type of 'learning_rate' in 'ReduceLROnPlateau' must be 'float, int, Variable', but received %s."
906 907
                % type(learning_rate)
            )
908 909 910 911 912 913 914 915 916 917 918 919 920

        self.learning_rate = learning_rate
        self.verbose = verbose
        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = self.create_lr_var(min_lr)
        self.eps = eps

        self.cooldown_counter = 0
        self.best_loss = None
        self.num_bad_epochs = 0
921 922
        self.epoch_num = 0

923
    # "cooldown_counter / best_loss / num_bad_epochs / epoch_num / learning_rate" will be stored.
924 925
    def _state_keys(self):
        self.keys = [
926 927 928 929 930
            'cooldown_counter',
            'best_loss',
            'num_bad_epochs',
            'epoch_num',
            'learning_rate',
931
        ]
932 933

    def __call__(self):
934 935
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
936 937 938 939
        return self.learning_rate

    def step(self, loss):
        """
940
        It should be invoked on each epoch. Update the learning rate in optimizer according to ``loss`` .
941 942 943
        The new learning rate will take effect on next call to ``optimizer.minimize`` .

        Args:
944 945
            loss (Variable): A ``Variable`` that will be monitored to determine whether the learning rate will reduce.
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. It should
946
                be 0-D Tensor with shape [].
947 948 949
                Specially, if ``mode`` has been set to ``'max'`` ,  the learning rate will reduce when it stops ascending.
        Returns:
            None
950

951 952 953 954
        Examples:
            Please refer to the example of current LearningRateDecay.
        """

955
        # loss.size must be 1
956
        check_type(loss, 'loss', Variable, 'ReduceLROnPlateau.step')
zhouweiwei2014's avatar
zhouweiwei2014 已提交
957 958 959
        assert np.prod(loss.shape) == 1, (
            "The number of elements of loss should be 1, but the current loss.shape is {}, whose number of elements is not 1. "
            "Maybe that you should call paddle.mean to process it first.".format(
960 961 962
                loss.shape
            )
        )
963

964
        self.epoch_num += 1
965 966 967 968 969 970 971 972 973 974 975 976
        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best_loss is None or self._is_better(loss, self.best_loss):
                self.best_loss = loss
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
H
HongyuJia 已提交
977
                new_lr = paddle.maximum(
978 979
                    self.learning_rate * self.decay_rate, self.min_lr
                )
980 981
                if self.learning_rate - new_lr > self.eps:
                    if self.verbose:
982 983
                        print(
                            'Epoch {}: reducing learning rate from {} to {}.'.format(
984 985 986
                                self.epoch_num,
                                float(self.learning_rate),
                                float(new_lr),
987 988
                            )
                        )
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
                    self.learning_rate = new_lr

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold
1003 1004 1005 1006 1007 1008 1009


class _LearningRateEpochDecay(LearningRateDecay):
    """
    :api_attr: imperative

    Base class of learning rate decay, which is updated each epoch.
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019
    Define the common interface of an _LearningRateEpochDecay.
    User should not use this class directly,
    but need to use one of it's implementation. And invoke method: `epoch()` each epoch.
    """

    def __init__(self, learning_rate, dtype=None):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
                "The type of 'learning_rate' must be 'float, int', but received %s."
1020 1021
                % type(learning_rate)
            )
1022 1023
        if learning_rate < 0:
            raise ValueError("Invalid learning rate: {}".format(learning_rate))
1024 1025 1026 1027

        self.base_lr = float(learning_rate)

        self.epoch_num = -1
1028
        self.dtype = dtype
1029 1030 1031 1032 1033 1034
        if dtype is None:
            self.dtype = "float32"
        self.learning_rate = self.create_lr_var(self.base_lr)

        self.epoch()

1035 1036
    # For those subclass who overload _LearningRateEpochDecay, "self.epoch_num/learning_rate" will be stored by default.
    # you can change it for your subclass.
1037 1038 1039
    def _state_keys(self):
        self.keys = ['epoch_num', 'learning_rate']

1040
    def __call__(self):
1041
        """
1042 1043
        Return last computed learning rate on current epoch.
        """
1044 1045
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
        return self.learning_rate

    def epoch(self, epoch=None):
        """
        compueted learning_rate and update it when invoked.
        """
        if epoch is None:
            self.epoch_num += 1
        else:
            self.epoch_num = epoch

        self.learning_rate = self.get_lr()

    def get_lr(self):
        raise NotImplementedError


class StepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` every ``step_size`` number of epoch.

1069
    The algorithm can be described as the code below.
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        decay_rate = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1084
        step_size (int): Period of learning rate decay.
1085
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1086 1087 1088 1089 1090 1091 1092
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1093

1094 1095
            import paddle.fluid as fluid
            import numpy as np
1096
            import paddle
1097 1098
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
1099
                linear = paddle.nn.Linear(10, 10)
1100 1101 1102 1103 1104 1105 1106
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(9):
                    for batch_id in range(5):
                        out = linear(input)
1107
                        loss = paddle.mean(out)
1108
                        adam.minimize(loss)
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.05
                    # epoch:6, current lr is 0.005
                    # epoch:7, current lr is 0.005
                    # epoch:8, current lr is 0.005

    """

    def __init__(self, learning_rate, step_size, decay_rate=0.1):
        if not isinstance(step_size, int):
            raise TypeError(
1127 1128 1129
                "The type of 'step_size' must be 'int', but received %s."
                % type(step_size)
            )
1130 1131 1132 1133 1134
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.step_size = step_size
        self.decay_rate = decay_rate
1135
        super().__init__(learning_rate)
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        i = self.epoch_num // self.step_size
        return self.base_lr * (decay_rate**i)


class MultiStepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` once ``epoch`` reaches one of the milestones.

1149
    The algorithm can be described as the code below.
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        decay_rate = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Parameters:
1164
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1165
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
1166
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1167 1168 1169 1170 1171 1172 1173
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1174

1175 1176
            import paddle.fluid as fluid
            import numpy as np
1177
            import paddle
1178 1179
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
1180
                linear = paddle.nn.Linear(10, 10)
1181 1182 1183 1184 1185 1186 1187
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.MultiStepDecay(0.5, milestones=[3, 5])
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
1188
                        loss = paddle.mean(out)
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.005

    """

    def __init__(self, learning_rate, milestones, decay_rate=0.1):
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
1206 1207
                % type(milestones)
            )
1208

1209 1210
        if not all(
            [
1211 1212
                milestones[i] < milestones[i + 1]
                for i in range(len(milestones) - 1)
1213 1214
            ]
        ):
1215 1216 1217 1218 1219 1220
            raise ValueError('The elements of milestones must be incremented')
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.milestones = milestones
        self.decay_rate = decay_rate
1221
        super().__init__(learning_rate)
1222 1223 1224 1225 1226 1227 1228

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        for i in range(len(self.milestones)):
            if self.epoch_num < self.milestones[i]:
                return self.base_lr * (decay_rate**i)

1229
        return self.base_lr * (decay_rate ** len(self.milestones))
1230 1231 1232 1233 1234 1235 1236


class LambdaDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Sets the learning rate of ``optimizer`` to the initial lr times a multiplicative factor, and this multiplicative
C
co63oc 已提交
1237
    factor is computed by function ``lr_lambda`` . ``lr_lambda`` is function which receives ``epoch`` .
1238

1239
    The algorithm can be described as the code below.
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

        learning_rate = 0.5        # epoch 0
        learning_rate = 0.475      # epoch 1
        learning_rate = 0.45125    # epoch 2

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1252
        lr_lambda (function): A function which computes a multiplicative factor given an integer parameter ``epoch`` , and
1253
            then multiply the initial learning rate by this multiplicative factor.
1254

1255 1256 1257 1258 1259
    Returns:
        None.

    Examples:
        .. code-block:: python
1260

1261 1262
            import paddle.fluid as fluid
            import numpy as np
1263
            import paddle
1264 1265
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
1266
                linear = paddle.nn.Linear(10, 10)
1267 1268 1269 1270 1271 1272 1273
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.LambdaDecay(0.5, lr_lambda=lambda x: 0.95**x)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
1274
                        loss = paddle.mean(out)
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:%d, current lr is %f" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.475
                    # epoch:2, current lr is 0.45125

    """

    def __init__(self, learning_rate, lr_lambda):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
1289 1290
                % type(lr_lambda)
            )
1291 1292

        self.lr_lambda = lr_lambda
1293
        super().__init__(learning_rate)
1294 1295 1296 1297 1298

    def get_lr(self):
        base_lr = self.create_lr_var(self.base_lr)

        return self.base_lr * self.lr_lambda(self.epoch_num)