Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d6f72c4f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d6f72c4f
编写于
3月 26, 2020
作者:
A
Aurelius84
提交者:
GitHub
3月 26, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add parameter(learning_rate) in NoamDecay (#23156)
* Add parameter(learning_rate) in NoamDecay test=develop
上级
af926306
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
66 addition
and
8 deletion
+66
-8
python/paddle/fluid/dygraph/learning_rate_scheduler.py
python/paddle/fluid/dygraph/learning_rate_scheduler.py
+14
-3
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+13
-5
python/paddle/fluid/tests/unittests/test_learning_rate_scheduler.py
...dle/fluid/tests/unittests/test_learning_rate_scheduler.py
+39
-0
未找到文件。
python/paddle/fluid/dygraph/learning_rate_scheduler.py
浏览文件 @
d6f72c4f
...
...
@@ -517,7 +517,7 @@ class NoamDecay(LearningRateDecay):
.. math::
decayed\_learning\_rate = d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
decayed\_learning\_rate =
learning\_rate *
d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
...
...
@@ -531,6 +531,9 @@ class NoamDecay(LearningRateDecay):
The default value is 1.
dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
'float32', 'float64'. The default value is 'float32'.
learning_rate(Variable|float|int): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number. Default 1.0
Returns:
None.
...
...
@@ -550,8 +553,15 @@ class NoamDecay(LearningRateDecay):
parameter_list = emb.parameters())
"""
def
__init__
(
self
,
d_model
,
warmup_steps
,
begin
=
1
,
step
=
1
,
dtype
=
'float32'
):
def
__init__
(
self
,
d_model
,
warmup_steps
,
begin
=
1
,
step
=
1
,
dtype
=
'float32'
,
learning_rate
=
1.0
):
super
(
NoamDecay
,
self
).
__init__
(
begin
,
step
,
dtype
)
self
.
learning_rate
=
learning_rate
self
.
d_model
=
d_model
self
.
warmup_steps
=
warmup_steps
...
...
@@ -559,7 +569,8 @@ class NoamDecay(LearningRateDecay):
from
..
import
layers
a
=
self
.
create_lr_var
(
self
.
step_num
**-
0.5
)
b
=
self
.
create_lr_var
((
self
.
warmup_steps
**-
1.5
)
*
self
.
step_num
)
lr_value
=
(
self
.
d_model
**-
0.5
)
*
layers
.
elementwise_min
(
a
,
b
)
lr_value
=
self
.
learning_rate
*
(
self
.
d_model
**-
0.5
)
*
layers
.
elementwise_min
(
a
,
b
)
return
lr_value
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
d6f72c4f
...
...
@@ -49,7 +49,7 @@ def _decay_step_counter(begin=0):
return
global_step
def
noam_decay
(
d_model
,
warmup_steps
):
def
noam_decay
(
d_model
,
warmup_steps
,
learning_rate
=
1.0
):
"""
Noam decay method. The numpy implementation of noam decay as follows.
...
...
@@ -58,11 +58,12 @@ def noam_decay(d_model, warmup_steps):
import paddle.fluid as fluid
import numpy as np
# set hyper parameters
base_lr = 0.01
d_model = 2
current_steps = 20
warmup_steps = 200
# compute
lr_value = np.power(d_model, -0.5) * np.min([
lr_value =
base_lr *
np.power(d_model, -0.5) * np.min([
np.power(current_steps, -0.5),
np.power(warmup_steps, -1.5) * current_steps])
...
...
@@ -74,6 +75,10 @@ def noam_decay(d_model, warmup_steps):
warmup_steps(Variable): A super parameter.
learning_rate(Variable|float|int): The initial learning rate. If the type
is Variable, it's a tensor with shape [1], the data type can be
float32 or float64. It also can be set to python int number. Default 1.0
Returns:
The decayed learning rate.
Examples:
...
...
@@ -84,18 +89,21 @@ def noam_decay(d_model, warmup_steps):
learning_rate = 0.01
lr = fluid.layers.learning_rate_scheduler.noam_decay(
1/(warmup_steps *(learning_rate ** 2)),
warmup_steps)
warmup_steps,
learning_rate)
"""
with
default_main_program
().
_lr_schedule_guard
():
if
in_dygraph_mode
():
decay
=
imperate_lr
.
NoamDecay
(
d_model
,
warmup_steps
)
decay
=
imperate_lr
.
NoamDecay
(
d_model
,
warmup_steps
,
learning_rate
=
learning_rate
)
return
decay
else
:
global_step
=
_decay_step_counter
(
1
)
a
=
global_step
**-
0.5
b
=
(
warmup_steps
**-
1.5
)
*
global_step
lr_value
=
(
d_model
**-
0.5
)
*
nn
.
elementwise_min
(
a
,
b
)
lr_value
=
learning_rate
*
(
d_model
**-
0.5
)
*
nn
.
elementwise_min
(
a
,
b
)
return
lr_value
...
...
python/paddle/fluid/tests/unittests/test_learning_rate_scheduler.py
浏览文件 @
d6f72c4f
...
...
@@ -89,6 +89,34 @@ def cosine_decay(global_step, learning_rate, step_each_epoch, epochs):
return
decayed_lr
def
noam_decay
(
global_step
,
d_model
,
warmup_steps
,
learning_rate
=
1.0
):
a
=
math
.
pow
(
global_step
,
-
0.5
)
b
=
math
.
pow
(
warmup_steps
,
-
1.5
)
*
global_step
decayed_lr
=
learning_rate
*
math
.
pow
(
d_model
,
-
0.5
)
*
min
(
a
,
b
)
return
decayed_lr
class
TestNoamLearningRateDecayDygraphMode
(
unittest
.
TestCase
):
def
test_dygraph_mode
(
self
):
with
fluid
.
dygraph
.
guard
():
d_model
=
0.01
warmup_steps
=
200
learning_rate
=
2.0
lr
=
fluid
.
layers
.
noam_decay
(
d_model
,
warmup_steps
,
learning_rate
)
for
step
in
range
(
5
):
step
+=
1
right_result
=
noam_decay
(
step
,
d_model
,
warmup_steps
,
learning_rate
)
fluid_result
=
lr
()
self
.
assertAlmostEqual
(
right_result
,
fluid_result
[
0
],
msg
=
'Failed lr scheduler in step {0}, Python result is {1}, Fluid result is {2}'
.
format
(
step
,
right_result
,
fluid_result
[
0
]))
class
TestLearningRateDecay
(
unittest
.
TestCase
):
def
check_decay
(
self
,
python_decay_fn
,
fluid_decay_fn
,
kwargs
):
places
=
[
fluid
.
CPUPlace
()]
...
...
@@ -112,6 +140,9 @@ class TestLearningRateDecay(unittest.TestCase):
exe
.
run
(
startup_prog
)
for
step
in
range
(
10
):
# Step of NoamDecay starts from 1.
if
python_decay_fn
.
__name__
==
'noam_decay'
:
step
+=
1
lr_val
,
=
exe
.
run
(
main_prog
,
feed
=
{},
fetch_list
=
[
decayed_lr
])
python_decayed_lr
=
python_decay_fn
(
global_step
=
float
(
step
),
**
kwargs
)
...
...
@@ -159,6 +190,11 @@ class TestLearningRateDecay(unittest.TestCase):
"step_each_epoch"
:
100
,
"epochs"
:
120
}),
(
noam_decay
,
layers
.
noam_decay
,
{
"d_model"
:
0.01
,
"warmup_steps"
:
200
,
"learning_rate"
:
2.0
}),
]
for
py_decay_fn
,
fluid_decay_fn
,
kwargs
in
decay_fns
:
...
...
@@ -195,6 +231,9 @@ class TestLinearWamrupLearningRateDecay(TestLearningRateDecay):
exe
.
run
(
startup_prog
)
for
step
in
range
(
20
):
# Step of NoamDecay starts from 1.
if
fluid_decay_fn
.
__name__
==
'noam_decay'
:
step
+=
1
lr_val
,
=
exe
.
run
(
main_prog
,
feed
=
{},
fetch_list
=
[
decayed_lr
])
if
step
<
warmup_steps
:
python_decayed_lr
=
linear_lr_warmup
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录