learning_rate_scheduler.py 44.6 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15
import math
16
import warnings
M
minqiyang 已提交
17

H
HongyuJia 已提交
18
import paddle
M
minqiyang 已提交
19
from .. import unique_name
20 21
from ..framework import Variable
from ..data_feeder import check_type
M
minqiyang 已提交
22

23
__all__ = [
24 25 26 27 28 29 30 31 32 33 34 35
    'NoamDecay',
    'PiecewiseDecay',
    'NaturalExpDecay',
    'ExponentialDecay',
    'InverseTimeDecay',
    'PolynomialDecay',
    'CosineDecay',
    'LinearLrWarmup',
    'ReduceLROnPlateau',
    'StepDecay',
    'MultiStepDecay',
    'LambdaDecay',
36
]
M
minqiyang 已提交
37 38


39
class LearningRateDecay:
M
minqiyang 已提交
40 41
    """
    Base class of learning rate decay
42

43 44 45
    Define the common interface of an LearningRateDecay.
    User should not use this class directly,
    but need to use one of it's implementation.
M
minqiyang 已提交
46 47
    """

M
minqiyang 已提交
48 49 50
    def __init__(self, begin=0, step=1, dtype='float32'):
        self.step_num = begin
        self.step_size = step
M
minqiyang 已提交
51 52 53 54 55
        self.dtype = dtype

    def __call__(self):
        lr = self.step()
        if isinstance(lr, float):
M
minqiyang 已提交
56
            lr = self.create_lr_var(lr)
M
minqiyang 已提交
57
        self.step_num += self.step_size
M
minqiyang 已提交
58 59
        return lr

M
minqiyang 已提交
60
    def create_lr_var(self, lr):
61 62 63
        """
        convert lr from float to variable

64
        Args:
65 66 67 68
            lr: learning rate
        Returns:
            learning rate variable
        """
M
minqiyang 已提交
69
        from .. import layers
70

M
minqiyang 已提交
71 72 73 74 75
        lr = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(lr),
            dtype=self.dtype,
76 77
            persistable=False,
        )
M
minqiyang 已提交
78
        return lr
M
minqiyang 已提交
79

80
    # Note: If you want to change what optimizer.state_dict stores, just overwrite this functions,
81
    # "self.step_num" will be stored by default.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def state_dict(self):
        """
        Returns the state of the scheduler as a :class:`dict`.

        It is a subset of self.__dict__ .
        """
        self._state_keys()
        state_dict = {}
        for key in self.keys:
            if key not in self.__dict__:
                continue
            value = self.__dict__[key]
            if isinstance(value, Variable):
                assert value.shape == [
                    1
                ], "shape of Variable in state_dict must be [1] {}".format(
98 99
                    value.shape
                )
100 101 102 103 104 105 106 107 108 109 110
                value = value.numpy()[0]
            state_dict[key] = value

        return state_dict

    def _state_keys(self):
        """
        set the keys in self.__dict__ that are needed to be saved.
        """
        self.keys = ['step_num']

111
    def set_state_dict(self, state_dict):
112 113 114 115 116 117 118 119 120
        """
        Loads the schedulers state.
        """
        self._state_keys()
        for key in self.keys:
            if key in state_dict:
                self.__dict__[key] = state_dict[key]
            else:
                raise RuntimeError(
121 122 123 124
                    "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict".format(
                        key
                    )
                )
125 126 127 128 129
        if len(state_dict) > len(self.keys):
            warnings.warn(
                "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
            )

130 131 132
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

M
minqiyang 已提交
133 134 135 136
    def step(self):
        raise NotImplementedError()


M
minqiyang 已提交
137
class PiecewiseDecay(LearningRateDecay):
138
    """
139
    :api_attr: imperative
140

D
DuYao 已提交
141
    Piecewise decay scheduler.
142 143 144 145 146

    The algorithm can be described as the code below.

    .. code-block:: text

D
DuYao 已提交
147 148 149 150 151 152 153 154 155 156
        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if global_step < 10000:
            learning_rate = 1.0
        elif 10000 <= global_step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Parameters:
157
        boundaries(list): A list of steps numbers. The type of element in the list is python int.
D
DuYao 已提交
158 159
        values(list): A list of learning rate values that will be picked during
            different step boundaries. The type of element in the list is python float.
T
tianshuo78520a 已提交
160
        begin(int): The begin step to initialize the global_step in the description above.
D
DuYao 已提交
161
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
162
            The default value is 1.
D
DuYao 已提交
163 164
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
165

166
    Returns:
D
DuYao 已提交
167
        None.
168

169 170 171 172 173 174 175
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          with fluid.dygraph.guard():
176
              emb = fluid.dygraph.Embedding( [10, 10] )
177
              optimizer = fluid.optimizer.SGD(
178 179
                 learning_rate=fluid.dygraph.PiecewiseDecay(boundaries, values, 0),
                 parameter_list = emb.parameters() )
180 181
    """

M
minqiyang 已提交
182
    def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
183
        super().__init__(begin, step, dtype)
M
minqiyang 已提交
184 185 186 187 188
        self.boundaries = boundaries
        self.values = values

        self.vars = []
        for value in values:
189
            self.vars.append(value)
M
minqiyang 已提交
190 191

    def step(self):
M
minqiyang 已提交
192 193
        for i in range(len(self.boundaries)):
            if self.step_num < self.boundaries[i]:
M
minqiyang 已提交
194
                return self.vars[i]
195
        return self.create_lr_var(self.vars[len(self.values) - 1])
196 197 198


class NaturalExpDecay(LearningRateDecay):
199
    r"""
200 201
    :api_attr: imperative

202
    Applies natural exponential decay to the initial learning rate.
203

D
DuYao 已提交
204
    The algorithm can be described as following.
205

D
DuYao 已提交
206 207
    .. math::

208
        decayed\_learning\_rate = learning\_rate * e^{y}
D
DuYao 已提交
209 210 211 212 213 214 215 216 217 218 219

    If staircase is set to False, then:

    .. math::

        y = - decay\_rate * \\frac{global\_step}{decay\_steps}

    If staircase is set to True, then:

    .. math::

220
        y = - decay\_rate * math.floor(\\frac{global\_step}{decay\_steps})
D
DuYao 已提交
221 222

    Parameters:
223 224
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
225 226 227
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(int): The decay rate.
228
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
229 230 231
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
232
            The default value is 1.
D
DuYao 已提交
233 234
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
235

236
    Returns:
D
DuYao 已提交
237
        None.
238

239 240 241
    Examples:
        .. code-block:: python

242 243 244 245 246 247 248 249 250 251 252
            import paddle.fluid as fluid
            base_lr = 0.1
            with fluid.dygraph.guard():
                emb = fluid.dygraph.Embedding([10, 10])
                sgd_optimizer = fluid.optimizer.SGD(
                        learning_rate=fluid.dygraph.NaturalExpDecay(
                            learning_rate=base_lr,
                            decay_steps=10000,
                            decay_rate=0.5,
                            staircase=True),
                        parameter_list=emb.parameters())
253 254 255

    """

256 257 258 259 260 261 262 263 264 265
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
266
        super().__init__(begin, step, dtype)
267 268 269 270 271 272 273 274
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
275 276
            div_res = paddle.floor(div_res)
        decayed_lr = self.learning_rate * paddle.exp(
277 278
            -1 * self.decay_rate * div_res
        )
279 280 281 282 283

        return decayed_lr


class ExponentialDecay(LearningRateDecay):
284
    r"""
285 286
    :api_attr: imperative

287 288
    Applies exponential decay to the learning rate.

D
DuYao 已提交
289
    The algorithm can be described as following.
290

D
DuYao 已提交
291
    .. math::
292

293
        decayed\_learning\_rate = learning\_rate * decay\_rate ^ y
D
DuYao 已提交
294 295 296 297 298

    If staircase is set to False, then:

    .. math::

299
        y = \\frac{global\_step}{decay\_steps}
D
DuYao 已提交
300 301 302 303 304 305 306 307 308

    If staircase is set to True, then:

    .. math::

        y = math.floor(\\frac{global\_step}{decay\_steps})


    Parameters:
309 310
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
311 312 313
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
314
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
315 316 317
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
318
            The default value is 1.
D
DuYao 已提交
319 320
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
321

322
    Returns:
D
DuYao 已提交
323
        None.
324

325 326 327 328 329 330 331
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
              sgd_optimizer = fluid.optimizer.SGD(
332 333 334 335 336
                    learning_rate=fluid.dygraph.ExponentialDecay(
                        learning_rate=base_lr,
                        decay_steps=10000,
                        decay_rate=0.5,
                        staircase=True))
337 338 339

    """

340 341 342 343 344 345 346 347 348 349
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
350
        super().__init__(begin, step, dtype)
351 352 353 354 355 356 357 358
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
359
            div_res = paddle.floor(div_res)
360 361 362 363 364 365 366

        decayed_lr = self.learning_rate * (self.decay_rate**div_res)

        return decayed_lr


class InverseTimeDecay(LearningRateDecay):
367
    r"""
368 369
    :api_attr: imperative

370 371
    Applies inverse time decay to the initial learning rate.

D
DuYao 已提交
372 373 374 375 376
    The algorithm can be described as following.
    If staircase is set to False, then:

    .. math::

377
        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * \\frac{global\_step}{decay\_step}}
D
DuYao 已提交
378 379 380 381 382 383 384 385

    If staircase is set to True, then:

    .. math::

        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * math.floor(\\frac{global\_step}{decay\_step})}

    Parameters:
386 387
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
388 389 390
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
391
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
392 393 394
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
395
            The default value is 1.
396
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be
D
DuYao 已提交
397
            'float32', 'float64'. The default value is 'float32'.
398

399
    Returns:
D
DuYao 已提交
400
        None.
401

402 403 404 405 406 407
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
408
              emb = fluid.dygraph.Embedding([10, 10])
409
              sgd_optimizer = fluid.optimizer.SGD(
410 411 412 413 414
                  learning_rate=fluid.dygraph.InverseTimeDecay(
                        learning_rate=base_lr,
                        decay_steps=10000,
                        decay_rate=0.5,
                        staircase=True),
415
                  parameter_list = emb.parameters())
416 417 418

    """

419 420 421 422 423 424 425 426 427 428
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
429
        super().__init__(begin, step, dtype)
430 431 432 433 434 435 436 437
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
438
            div_res = paddle.floor(div_res)
439 440 441 442 443 444 445

        decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)

        return decayed_lr


class PolynomialDecay(LearningRateDecay):
446
    r"""
447 448
    :api_attr: imperative

449 450
    Applies polynomial decay to the initial learning rate.

D
DuYao 已提交
451 452 453 454 455 456
    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

457
        decay\_steps & = decay\_steps * math.ceil(\\frac{global\_step}{decay\_steps})
458

D
DuYao 已提交
459 460 461 462 463 464
        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    If cycle is set to False, then:

    .. math::

465
        global\_step & = min(global\_step, decay\_steps)
D
DuYao 已提交
466 467 468 469

        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    Parameters:
470 471
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
472
            float32 or float64. It also can be set to python int number.
473
        decay_steps(int): The decay step size. It determines the decay cycle.
D
DuYao 已提交
474 475 476 477 478
        end_learning_rate(float, optional): The minimum final learning rate. The default value is 0.0001.
        power(float, optional): Power of polynomial. The default value is 1.0.
        cycle(bool, optional): If set true, decay the learning rate every decay_steps. The default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
479
            The default value is 1.
D
DuYao 已提交
480 481
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
482

483
    Returns:
D
DuYao 已提交
484
        None.
485

486 487 488 489 490 491 492 493
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          with fluid.dygraph.guard():
494
              emb = fluid.dygraph.Embedding( [10, 10])
495 496
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.PolynomialDecay(
497 498
                  start_lr, total_step, end_lr, power=1.0),
                  parameter_list = emb.parameters())
499 500 501

    """

502 503 504 505 506 507 508 509 510 511 512
    def __init__(
        self,
        learning_rate,
        decay_steps,
        end_learning_rate=0.0001,
        power=1.0,
        cycle=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
513
        super().__init__(begin, step, dtype)
514 515 516 517 518 519 520
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.end_learning_rate = end_learning_rate
        self.power = power
        self.cycle = cycle

    def step(self):
M
minqiyang 已提交
521 522
        tmp_step_num = self.step_num
        tmp_decay_steps = self.decay_steps
523
        if self.cycle:
524
            div_res = paddle.ceil(
525 526
                self.create_lr_var(tmp_step_num / float(self.decay_steps))
            )
527

M
minqiyang 已提交
528 529
            if tmp_step_num == 0:
                div_res = self.create_lr_var(1.0)
M
minqiyang 已提交
530
            tmp_decay_steps = self.decay_steps * div_res
531
        else:
532
            tmp_step_num = self.create_lr_var(
533 534 535 536
                tmp_step_num
                if tmp_step_num < self.decay_steps
                else self.decay_steps
            )
M
minqiyang 已提交
537

538 539 540
        decayed_lr = (self.learning_rate - self.end_learning_rate) * (
            (1 - tmp_step_num / tmp_decay_steps) ** self.power
        ) + self.end_learning_rate
M
minqiyang 已提交
541
        return decayed_lr
542

M
minqiyang 已提交
543 544

class CosineDecay(LearningRateDecay):
545
    r"""
546 547
    :api_attr: imperative

548 549
    Applies cosine decay to the learning rate.

D
DuYao 已提交
550
    The algorithm can be described as following.
551 552 553

    .. math::

D
DuYao 已提交
554
        decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step * \\frac{math.pi}{step\_each\_epoch} ) + 1)
555

D
DuYao 已提交
556
    Parameters:
557 558
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
559 560 561 562 563
            float32 or float64. It also can be set to python int number.
        step_each_epoch(int): The number of steps in an epoch.
        epochs(int): The number of epochs.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
564
            The default value is 1.
D
DuYao 已提交
565 566
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
567

568
    Returns:
D
DuYao 已提交
569
        None.
570

571
    Examples:
572
        .. code-block:: python
573

574
            base_lr = 0.1
575 576
            with fluid.dygraph.guard():
                optimizer  = fluid.optimizer.SGD(
577 578
                    learning_rate = fluid.dygraph.CosineDecay(
                            base_lr, 10000, 120) )
579 580
    """

581 582 583 584 585 586 587 588 589
    def __init__(
        self,
        learning_rate,
        step_each_epoch,
        epochs,
        begin=0,
        step=1,
        dtype='float32',
    ):
590
        super().__init__(begin, step, dtype)
M
minqiyang 已提交
591 592 593 594 595
        self.learning_rate = learning_rate
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs

    def step(self):
596
        cur_epoch = paddle.floor(
597 598 599 600 601
            self.create_lr_var(self.step_num / self.step_each_epoch)
        )
        decayed_lr = (
            self.learning_rate
            * 0.5
602
            * (paddle.cos(cur_epoch * math.pi / self.epochs) + 1)
603
        )
M
minqiyang 已提交
604 605 606 607
        return decayed_lr


class NoamDecay(LearningRateDecay):
608
    r"""
609 610
    :api_attr: imperative

611
    Applies Noam decay to the initial learning rate.
D
DuYao 已提交
612 613 614 615 616

    The algorithm can be described as following.

    .. math::

617
        decayed\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
D
DuYao 已提交
618

619
    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
D
DuYao 已提交
620 621

    Parameters:
622
        d$_{model}$(Variable|int): The dimensionality of input and output feature vector of model. If type is Variable,
D
DuYao 已提交
623
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
624
        warmup_steps(Variable|int): The number of warmup steps. A super parameter. If type is Variable,
D
DuYao 已提交
625 626 627
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
628
            The default value is 1.
D
DuYao 已提交
629 630
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
631 632 633
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0
634

635
    Returns:
D
DuYao 已提交
636
        None.
637

638 639 640 641 642 643 644
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          warmup_steps = 100
          learning_rate = 0.01
          with fluid.dygraph.guard():
645
              emb = fluid.dygraph.Embedding([10, 10])
646 647 648
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.NoamDecay(
                         1/(warmup_steps *(learning_rate ** 2)),
649 650
                         warmup_steps),
                  parameter_list = emb.parameters())
651 652
    """

653 654 655 656 657 658 659 660 661
    def __init__(
        self,
        d_model,
        warmup_steps,
        begin=1,
        step=1,
        dtype='float32',
        learning_rate=1.0,
    ):
662
        super().__init__(begin, step, dtype)
663
        self.learning_rate = learning_rate
M
minqiyang 已提交
664 665 666 667 668
        self.d_model = d_model
        self.warmup_steps = warmup_steps

    def step(self):
        from .. import layers
669

M
minqiyang 已提交
670 671
        a = self.create_lr_var(self.step_num**-0.5)
        b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
672
        lr_value = (
673
            self.learning_rate * (self.d_model**-0.5) * paddle.minimum(a, b)
674
        )
M
minqiyang 已提交
675
        return lr_value
H
hong 已提交
676 677 678 679


class LinearLrWarmup(LearningRateDecay):
    """
680 681
    :api_attr: imperative

H
hong 已提交
682 683
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
684

H
hong 已提交
685
    When global_step < warmup_steps, learning rate is updated as:
686

H
hong 已提交
687
    .. code-block:: text
688

H
hong 已提交
689 690
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
691

H
hong 已提交
692
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
693

H
hong 已提交
694
    When global_step >= warmup_steps, learning rate is updated as:
695

H
hong 已提交
696
    .. code-block:: text
697

H
hong 已提交
698
            lr = learning_rate
699

H
hong 已提交
700
    where lr is the learning_rate after warm-up.
701

H
hong 已提交
702 703 704 705 706 707 708
    Args:
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
709
            The default value is 1.
H
hong 已提交
710 711
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
712

H
hong 已提交
713 714
    Returns:
        Variable: Warm-up learning rate with the same data type as learning_rate.
715 716


H
hong 已提交
717
    Examples:
718

H
hong 已提交
719
    .. code-block:: python
720

H
hong 已提交
721
        import paddle.fluid as fluid
722 723

        learning_rate = 0.1
H
hong 已提交
724
        warmup_steps = 50
725
        start_lr = 0
H
hong 已提交
726 727
        end_lr = 0.1

728
        with fluid.dygraph.guard():
H
hong 已提交
729
            lr_decay = fluid.dygraph.LinearLrWarmup( learning_rate, warmup_steps, start_lr, end_lr)
730 731


H
hong 已提交
732 733
    """

734 735 736 737 738 739 740 741 742 743
    def __init__(
        self,
        learning_rate,
        warmup_steps,
        start_lr,
        end_lr,
        begin=1,
        step=1,
        dtype='float32',
    ):
744
        super().__init__(begin, step, dtype)
745 746 747 748 749
        type_check = (
            isinstance(learning_rate, float)
            or isinstance(learning_rate, int)
            or isinstance(learning_rate, LearningRateDecay)
        )
H
hong 已提交
750 751
        if not type_check:
            raise TypeError(
752 753 754 755
                "the type of learning_rate should be [int, float or LearningRateDecay], the current type is {}".format(
                    learning_rate
                )
            )
H
hong 已提交
756 757
        self.learning_rate = learning_rate
        self.warmup_steps = warmup_steps
758
        self.start_lr = start_lr
759 760 761 762 763 764
        assert (
            end_lr > start_lr
        ), "end_lr {} must be greater than start_lr {}".format(end_lr, start_lr)
        self.lr_ratio_before_warmup = (float(end_lr) - float(start_lr)) / float(
            warmup_steps
        )
H
hong 已提交
765 766 767 768 769 770 771

    def step(self):
        base_lr = self.learning_rate
        if isinstance(self.learning_rate, LearningRateDecay):
            base_lr = base_lr()

        from .. import layers
772

H
hong 已提交
773
        if self.step_num < self.warmup_steps:
774
            return self.lr_ratio_before_warmup * self.step_num + self.start_lr
H
hong 已提交
775 776
        else:
            return base_lr
777 778 779 780


class ReduceLROnPlateau(LearningRateDecay):
    """
781 782
    :api_attr: imperative

783
    Reduce learning rate when ``loss`` has stopped descending. Models often benefit from reducing the learning rate
784 785
    by 2 to 10 times once model performance has no longer improvement.

786 787 788
    The ``loss`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``loss``
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * decay_rate`` .
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``loss`` stop ascending for a ``patience`` number
789 790 791 792 793 794 795
    of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming normal operation.

    Args:
        learning_rate (Variable|float|int): The initial learning rate. It can be set to python float or int number.
            If the type is Variable, it should be 1-D Tensor with shape [1], the data type can be 'float32' or 'float64'.
796 797
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning
798
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
799
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
800
            It should be less than 1.0. Default: 0.1.
801
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
802 803
            Default: 10.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.
804
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
805 806
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
807
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
808 809 810 811 812 813
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
        eps (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is
            ignored. Default: 1e-8.
        dtype (str, optional): The data type used to create the learning rate variable. The data type can be set as
814 815
            'float32', 'float64'. Default: 'float32'.

816 817 818 819
    Returns:
        Reduced learning rate.

    Examples:
820

821 822 823 824 825 826 827 828 829 830 831 832 833 834
    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = fluid.dygraph.Linear(10, 10)
            input = fluid.dygraph.to_variable(x)

            reduce_lr = fluid.dygraph.ReduceLROnPlateau(
                                    learning_rate = 1.0,
                                    decay_rate = 0.5,
                                    patience = 5,
835
                                    verbose = True,
836 837 838 839 840 841 842 843 844 845 846 847
                                    cooldown = 3)
            adam = fluid.optimizer.Adam(
                learning_rate = reduce_lr,
                parameter_list = linear.parameters())

            for epoch in range(10):
                total_loss = 0
                for bath_id in range(5):
                    out = linear(input)
                    loss = fluid.layers.reduce_mean(out)
                    total_loss += loss
                    adam.minimize(loss)
848

849 850 851 852 853 854 855 856 857
                avg_loss = total_loss/5

                # adjust learning rate according to avg_loss
                reduce_lr.step(avg_loss)
                lr = adam.current_step_lr()
                print("current avg_loss is %s, current lr is %s" % (avg_loss.numpy()[0], lr))

    """

858 859 860 861 862 863 864 865 866 867 868 869 870 871
    def __init__(
        self,
        learning_rate,
        mode='min',
        decay_rate=0.1,
        patience=10,
        verbose=False,
        threshold=1e-4,
        threshold_mode='rel',
        cooldown=0,
        min_lr=0,
        eps=1e-8,
        dtype='float32',
    ):
872
        super().__init__(dtype=dtype)
873 874 875 876 877 878 879 880 881
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode ' + mode + ' is unknown!')
        self.mode = mode

        if decay_rate >= 1.0:
            raise ValueError(
                'new_lr = origin_lr * decay_rate and decay_rate should be < 1.0.'
            )
882
        self.decay_rate = self.create_lr_var(decay_rate)
883 884 885

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
886 887 888
            raise ValueError(
                'threshold mode ' + threshold_mode + ' is unknown!'
            )
889
        self.threshold_mode = threshold_mode
890 891 892 893 894 895
        check_type(
            learning_rate,
            'learning_rate',
            (float, int, Variable),
            'ReduceLROnPlateau',
        )
896 897 898
        if not isinstance(learning_rate, (float, int, Variable)):
            raise TypeError(
                "The type of 'learning_rate' in 'ReduceLROnPlateau' must be 'float, int, Variable', but received %s."
899 900
                % type(learning_rate)
            )
901 902 903 904 905 906 907 908 909 910 911 912 913

        self.learning_rate = learning_rate
        self.verbose = verbose
        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = self.create_lr_var(min_lr)
        self.eps = eps

        self.cooldown_counter = 0
        self.best_loss = None
        self.num_bad_epochs = 0
914 915
        self.epoch_num = 0

916
    # "cooldown_counter / best_loss / num_bad_epochs / epoch_num / learning_rate" will be stored.
917 918
    def _state_keys(self):
        self.keys = [
919 920 921 922 923
            'cooldown_counter',
            'best_loss',
            'num_bad_epochs',
            'epoch_num',
            'learning_rate',
924
        ]
925 926

    def __call__(self):
927 928
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
929 930 931 932
        return self.learning_rate

    def step(self, loss):
        """
933
        It should be invoked on each epoch. Update the learning rate in optimizer according to ``loss`` .
934 935 936
        The new learning rate will take effect on next call to ``optimizer.minimize`` .

        Args:
937 938 939
            loss (Variable): A ``Variable`` that will be monitored to determine whether the learning rate will reduce.
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. It should
                be 1-D Tensor with shape [1].
940 941 942
                Specially, if ``mode`` has been set to ``'max'`` ,  the learning rate will reduce when it stops ascending.
        Returns:
            None
943

944 945 946 947 948 949
        Examples:
            Please refer to the example of current LearningRateDecay.
        """

        # loss must be 1-D Tensor with shape [1]
        check_type(loss, 'loss', Variable, 'ReduceLROnPlateau.step')
950 951 952 953 954 955 956
        assert len(loss.shape) == 1 and loss.shape[0] == 1, (
            "the loss.shape "
            "should be (1L,), but the current loss.shape is {}. Maybe that "
            "you should call paddle.mean to process it first.".format(
                loss.shape
            )
        )
957

958
        self.epoch_num += 1
959 960 961 962 963 964 965 966 967 968 969 970
        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best_loss is None or self._is_better(loss, self.best_loss):
                self.best_loss = loss
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
H
HongyuJia 已提交
971
                new_lr = paddle.maximum(
972 973
                    self.learning_rate * self.decay_rate, self.min_lr
                )
974 975
                if self.learning_rate - new_lr > self.eps:
                    if self.verbose:
976 977 978 979 980 981 982 983 984 985
                        old_lr = (
                            self.learning_rate.numpy()[0]
                            if isinstance(self.learning_rate, Variable)
                            else self.learning_rate
                        )
                        print(
                            'Epoch {}: reducing learning rate from {} to {}.'.format(
                                self.epoch_num, old_lr, new_lr.numpy()[0]
                            )
                        )
986 987 988 989 990 991 992 993 994 995 996 997 998 999
                    self.learning_rate = new_lr

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold
1000 1001 1002 1003 1004 1005 1006


class _LearningRateEpochDecay(LearningRateDecay):
    """
    :api_attr: imperative

    Base class of learning rate decay, which is updated each epoch.
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016
    Define the common interface of an _LearningRateEpochDecay.
    User should not use this class directly,
    but need to use one of it's implementation. And invoke method: `epoch()` each epoch.
    """

    def __init__(self, learning_rate, dtype=None):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
                "The type of 'learning_rate' must be 'float, int', but received %s."
1017 1018
                % type(learning_rate)
            )
1019 1020
        if learning_rate < 0:
            raise ValueError("Invalid learning rate: {}".format(learning_rate))
1021 1022 1023 1024

        self.base_lr = float(learning_rate)

        self.epoch_num = -1
1025
        self.dtype = dtype
1026 1027 1028 1029 1030 1031
        if dtype is None:
            self.dtype = "float32"
        self.learning_rate = self.create_lr_var(self.base_lr)

        self.epoch()

1032 1033
    # For those subclass who overload _LearningRateEpochDecay, "self.epoch_num/learning_rate" will be stored by default.
    # you can change it for your subclass.
1034 1035 1036
    def _state_keys(self):
        self.keys = ['epoch_num', 'learning_rate']

1037
    def __call__(self):
1038
        """
1039 1040
        Return last computed learning rate on current epoch.
        """
1041 1042
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        return self.learning_rate

    def epoch(self, epoch=None):
        """
        compueted learning_rate and update it when invoked.
        """
        if epoch is None:
            self.epoch_num += 1
        else:
            self.epoch_num = epoch

        self.learning_rate = self.get_lr()

    def get_lr(self):
        raise NotImplementedError


class StepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` every ``step_size`` number of epoch.

1066
    The algorithm can be described as the code below.
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        decay_rate = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1081
        step_size (int): Period of learning rate decay.
1082
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1083 1084 1085 1086 1087 1088 1089
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(9):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
1104
                        adam.minimize(loss)
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.05
                    # epoch:6, current lr is 0.005
                    # epoch:7, current lr is 0.005
                    # epoch:8, current lr is 0.005

    """

    def __init__(self, learning_rate, step_size, decay_rate=0.1):
        if not isinstance(step_size, int):
            raise TypeError(
1123 1124 1125
                "The type of 'step_size' must be 'int', but received %s."
                % type(step_size)
            )
1126 1127 1128 1129 1130
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.step_size = step_size
        self.decay_rate = decay_rate
1131
        super().__init__(learning_rate)
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        i = self.epoch_num // self.step_size
        return self.base_lr * (decay_rate**i)


class MultiStepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` once ``epoch`` reaches one of the milestones.

1145
    The algorithm can be described as the code below.
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        decay_rate = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Parameters:
1160
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1161
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
1162
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1163 1164 1165 1166 1167 1168 1169
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1170

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.MultiStepDecay(0.5, milestones=[3, 5])
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.005

    """

    def __init__(self, learning_rate, milestones, decay_rate=0.1):
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
1201 1202
                % type(milestones)
            )
1203

1204 1205
        if not all(
            [
1206 1207
                milestones[i] < milestones[i + 1]
                for i in range(len(milestones) - 1)
1208 1209
            ]
        ):
1210 1211 1212 1213 1214 1215
            raise ValueError('The elements of milestones must be incremented')
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.milestones = milestones
        self.decay_rate = decay_rate
1216
        super().__init__(learning_rate)
1217 1218 1219 1220 1221 1222 1223

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        for i in range(len(self.milestones)):
            if self.epoch_num < self.milestones[i]:
                return self.base_lr * (decay_rate**i)

1224
        return self.base_lr * (decay_rate ** len(self.milestones))
1225 1226 1227 1228 1229 1230 1231 1232 1233


class LambdaDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Sets the learning rate of ``optimizer`` to the initial lr times a multiplicative factor, and this multiplicative
    factor is computed by function ``lr_lambda`` . ``lr_lambda`` is funciton which receives ``epoch`` .

1234
    The algorithm can be described as the code below.
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

        learning_rate = 0.5        # epoch 0
        learning_rate = 0.475      # epoch 1
        learning_rate = 0.45125    # epoch 2

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1247
        lr_lambda (function): A function which computes a multiplicative factor given an integer parameter ``epoch`` , and
1248
            then multiply the initial learning rate by this multiplicative factor.
1249

1250 1251 1252 1253 1254
    Returns:
        None.

    Examples:
        .. code-block:: python
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.LambdaDecay(0.5, lr_lambda=lambda x: 0.95**x)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:%d, current lr is %f" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.475
                    # epoch:2, current lr is 0.45125

    """

    def __init__(self, learning_rate, lr_lambda):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
1283 1284
                % type(lr_lambda)
            )
1285 1286

        self.lr_lambda = lr_lambda
1287
        super().__init__(learning_rate)
1288 1289 1290 1291 1292

    def get_lr(self):
        base_lr = self.create_lr_var(self.base_lr)

        return self.base_lr * self.lr_lambda(self.epoch_num)