learning_rate_scheduler.py 42.4 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

M
minqiyang 已提交
17 18
import math

M
minqiyang 已提交
19
from .. import unique_name
20 21
from ..framework import Variable
from ..data_feeder import check_type
M
minqiyang 已提交
22

23
__all__ = [
M
minqiyang 已提交
24
    'NoamDecay', 'PiecewiseDecay', 'NaturalExpDecay', 'ExponentialDecay',
25
    'InverseTimeDecay', 'PolynomialDecay', 'CosineDecay', 'LinearLrWarmup',
26
    'ReduceLROnPlateau', 'StepDecay', 'MultiStepDecay', 'LambdaDecay'
27
]
M
minqiyang 已提交
28 29 30 31 32


class LearningRateDecay(object):
    """
    Base class of learning rate decay
33 34 35 36
    
    Define the common interface of an LearningRateDecay.
    User should not use this class directly,
    but need to use one of it's implementation.
M
minqiyang 已提交
37 38
    """

M
minqiyang 已提交
39 40 41
    def __init__(self, begin=0, step=1, dtype='float32'):
        self.step_num = begin
        self.step_size = step
M
minqiyang 已提交
42 43 44 45 46
        self.dtype = dtype

    def __call__(self):
        lr = self.step()
        if isinstance(lr, float):
M
minqiyang 已提交
47
            lr = self.create_lr_var(lr)
M
minqiyang 已提交
48
        self.step_num += self.step_size
M
minqiyang 已提交
49 50
        return lr

M
minqiyang 已提交
51
    def create_lr_var(self, lr):
52 53 54 55 56 57 58 59
        """
        convert lr from float to variable

        Args: 
            lr: learning rate
        Returns:
            learning rate variable
        """
M
minqiyang 已提交
60
        from .. import layers
M
minqiyang 已提交
61 62 63 64 65
        lr = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(lr),
            dtype=self.dtype,
Z
Zeng Jinle 已提交
66
            persistable=False)
M
minqiyang 已提交
67
        return lr
M
minqiyang 已提交
68 69 70 71 72

    def step(self):
        raise NotImplementedError()


M
minqiyang 已提交
73
class PiecewiseDecay(LearningRateDecay):
74
    """
75 76
    :api_attr: imperative
    
D
DuYao 已提交
77
    Piecewise decay scheduler.
78 79 80 81 82

    The algorithm can be described as the code below.

    .. code-block:: text

D
DuYao 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95
        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if global_step < 10000:
            learning_rate = 1.0
        elif 10000 <= global_step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Parameters:
        boundaries(list): A list of steps numbers. The type of element in the list is python int. 
        values(list): A list of learning rate values that will be picked during
            different step boundaries. The type of element in the list is python float.
T
tianshuo78520a 已提交
96
        begin(int): The begin step to initialize the global_step in the description above.
D
DuYao 已提交
97
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
98
            The default value is 1.
D
DuYao 已提交
99 100
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
101

102
    Returns:
D
DuYao 已提交
103
        None.
104

105 106 107 108 109 110 111
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          with fluid.dygraph.guard():
112
              emb = fluid.dygraph.Embedding( [10, 10] )
113
              optimizer = fluid.optimizer.SGD(
114 115
                 learning_rate=fluid.dygraph.PiecewiseDecay(boundaries, values, 0),
                 parameter_list = emb.parameters() )
116 117
    """

M
minqiyang 已提交
118 119
    def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
        super(PiecewiseDecay, self).__init__(begin, step, dtype)
M
minqiyang 已提交
120 121 122 123 124
        self.boundaries = boundaries
        self.values = values

        self.vars = []
        for value in values:
125
            self.vars.append(value)
M
minqiyang 已提交
126 127

    def step(self):
M
minqiyang 已提交
128 129
        for i in range(len(self.boundaries)):
            if self.step_num < self.boundaries[i]:
M
minqiyang 已提交
130
                return self.vars[i]
131
        return self.create_lr_var(self.vars[len(self.values) - 1])
132 133 134


class NaturalExpDecay(LearningRateDecay):
135
    """
136 137
    :api_attr: imperative

138 139
    Applies natural exponential decay to the initial learning rate.
    
D
DuYao 已提交
140
    The algorithm can be described as following.
141

D
DuYao 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    .. math::

        decayed\_learning\_rate = learning\_rate * e^{y} 

    If staircase is set to False, then:

    .. math::

        y = - decay\_rate * \\frac{global\_step}{decay\_steps}

    If staircase is set to True, then:

    .. math::

        y = - decay\_rate * math.floor(\\frac{global\_step}{decay\_steps}) 

    Parameters:
        learning_rate(Variable|float): The initial learning rate. If the type 
            is Variable, it's a tensor with shape [1], the data type can be  
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(int): The decay rate.
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The 
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
168
            The default value is 1.
D
DuYao 已提交
169 170
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
171

172
    Returns:
D
DuYao 已提交
173
        None.
174

175 176 177
    Examples:
        .. code-block:: python

178 179 180 181 182 183 184 185 186 187 188
            import paddle.fluid as fluid
            base_lr = 0.1
            with fluid.dygraph.guard():
                emb = fluid.dygraph.Embedding([10, 10])
                sgd_optimizer = fluid.optimizer.SGD(
                        learning_rate=fluid.dygraph.NaturalExpDecay(
                            learning_rate=base_lr,
                            decay_steps=10000,
                            decay_rate=0.5,
                            staircase=True),
                        parameter_list=emb.parameters())
189 190 191

    """

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(NaturalExpDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)
        decayed_lr = self.learning_rate * layers.exp(-1 * self.decay_rate *
                                                     div_res)

        return decayed_lr


class ExponentialDecay(LearningRateDecay):
218
    """
219 220
    :api_attr: imperative

221 222
    Applies exponential decay to the learning rate.

D
DuYao 已提交
223
    The algorithm can be described as following.
224
    
D
DuYao 已提交
225
    .. math::
226

D
DuYao 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        decayed\_learning\_rate = learning\_rate * decay\_rate ^ y 

    If staircase is set to False, then:

    .. math::

        y = \\frac{global\_step}{decay\_steps} 

    If staircase is set to True, then:

    .. math::

        y = math.floor(\\frac{global\_step}{decay\_steps})


    Parameters:
        learning_rate(Variable|float): The initial learning rate. If the type 
            is Variable, it's a tensor with shape [1], the data type can be  
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The 
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
252
            The default value is 1.
D
DuYao 已提交
253 254
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
255

256
    Returns:
D
DuYao 已提交
257
        None.
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
              sgd_optimizer = fluid.optimizer.SGD(
    	            learning_rate=fluid.dygraph.ExponentialDecay(
		        learning_rate=base_lr,
    		        decay_steps=10000,
		        decay_rate=0.5,
		        staircase=True))

    """

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(ExponentialDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate * (self.decay_rate**div_res)

        return decayed_lr


class InverseTimeDecay(LearningRateDecay):
300
    """
301 302
    :api_attr: imperative

303 304
    Applies inverse time decay to the initial learning rate.

D
DuYao 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    The algorithm can be described as following.
    If staircase is set to False, then:

    .. math::

        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * \\frac{global\_step}{decay\_step}}  

    If staircase is set to True, then:

    .. math::

        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * math.floor(\\frac{global\_step}{decay\_step})}

    Parameters:
        learning_rate(Variable|float): The initial learning rate. If the type 
            is Variable, it's a tensor with shape [1], the data type can be  
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The 
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
328
            The default value is 1.
D
DuYao 已提交
329 330
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be 
            'float32', 'float64'. The default value is 'float32'.
331

332
    Returns:
D
DuYao 已提交
333
        None.
334

335 336 337 338 339 340
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
341
              emb = fluid.dygraph.Embedding([10, 10])
342 343 344 345 346
              sgd_optimizer = fluid.optimizer.SGD(
	          learning_rate=fluid.dygraph.InverseTimeDecay(
		        learning_rate=base_lr,
		        decay_steps=10000,
		        decay_rate=0.5,
347 348
		        staircase=True),
                  parameter_list = emb.parameters())
349 350 351

    """

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(InverseTimeDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)

        return decayed_lr


class PolynomialDecay(LearningRateDecay):
378
    """
379 380
    :api_attr: imperative

381 382
    Applies polynomial decay to the initial learning rate.

D
DuYao 已提交
383 384 385 386 387 388 389
    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

        decay\_steps & = decay\_steps * math.ceil(\\frac{global\_step}{decay\_steps}) 
390

D
DuYao 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    If cycle is set to False, then:

    .. math::

        global\_step & = min(global\_step, decay\_steps) 

        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    Parameters:
        learning_rate(Variable|float): The initial learning rate. If the type 
            is Variable, it's a tensor with shape [1], the data type can be  
            float32 or float64. It also can be set to python int number.
        decay_steps(int32): The decay step size. It determines the decay cycle.
        end_learning_rate(float, optional): The minimum final learning rate. The default value is 0.0001.
        power(float, optional): Power of polynomial. The default value is 1.0.
        cycle(bool, optional): If set true, decay the learning rate every decay_steps. The default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
411
            The default value is 1.
D
DuYao 已提交
412 413
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
414

415
    Returns:
D
DuYao 已提交
416
        None.
417

418 419 420 421 422 423 424 425
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          with fluid.dygraph.guard():
426
              emb = fluid.dygraph.Embedding( [10, 10])
427 428
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.PolynomialDecay(
429 430
                  start_lr, total_step, end_lr, power=1.0),
                  parameter_list = emb.parameters())
431 432 433

    """

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 end_learning_rate=0.0001,
                 power=1.0,
                 cycle=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(PolynomialDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.end_learning_rate = end_learning_rate
        self.power = power
        self.cycle = cycle

    def step(self):
        from .. import layers
M
minqiyang 已提交
452 453
        tmp_step_num = self.step_num
        tmp_decay_steps = self.decay_steps
454 455
        if self.cycle:
            div_res = layers.ceil(
M
minqiyang 已提交
456
                self.create_lr_var(tmp_step_num / float(self.decay_steps)))
457

M
minqiyang 已提交
458 459
            if tmp_step_num == 0:
                div_res = self.create_lr_var(1.0)
M
minqiyang 已提交
460
            tmp_decay_steps = self.decay_steps * div_res
461
        else:
M
minqiyang 已提交
462 463 464 465 466 467 468
            tmp_step_num = self.create_lr_var(tmp_step_num
                                              if tmp_step_num < self.decay_steps
                                              else self.decay_steps)

        decayed_lr = (self.learning_rate - self.end_learning_rate) * \
            ((1 - tmp_step_num / tmp_decay_steps) ** self.power) + self.end_learning_rate
        return decayed_lr
469

M
minqiyang 已提交
470 471

class CosineDecay(LearningRateDecay):
472
    """
473 474
    :api_attr: imperative

475 476
    Applies cosine decay to the learning rate.

D
DuYao 已提交
477
    The algorithm can be described as following.
478 479 480

    .. math::

D
DuYao 已提交
481
        decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step * \\frac{math.pi}{step\_each\_epoch} ) + 1)
482
    
D
DuYao 已提交
483 484 485 486 487 488 489 490
    Parameters:
        learning_rate(Variable|float): The initial learning rate. If the type 
            is Variable, it's a tensor with shape [1], the data type can be  
            float32 or float64. It also can be set to python int number.
        step_each_epoch(int): The number of steps in an epoch.
        epochs(int): The number of epochs.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
491
            The default value is 1.
D
DuYao 已提交
492 493
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
494

495
    Returns:
D
DuYao 已提交
496
        None.
497

498 499 500 501 502 503 504 505 506 507
    Examples:
	.. code-block:: python

  	    base_lr = 0.1
            with fluid.dygraph.guard():
                optimizer  = fluid.optimizer.SGD(
        	    learning_rate = fluid.dygraph.CosineDecay(
	                    base_lr, 10000, 120) )
    """

M
minqiyang 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    def __init__(self,
                 learning_rate,
                 step_each_epoch,
                 epochs,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(CosineDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs

    def step(self):
        from .. import layers
        cur_epoch = layers.floor(
            self.create_lr_var(self.step_num / self.step_each_epoch))
        decayed_lr = self.learning_rate * 0.5 * (
            layers.cos(cur_epoch * math.pi / self.epochs) + 1)
        return decayed_lr


class NoamDecay(LearningRateDecay):
530
    """
531 532
    :api_attr: imperative

D
DuYao 已提交
533 534 535 536 537 538
    Applies Noam decay to the initial learning rate. 

    The algorithm can be described as following.

    .. math::

539
        decayed\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
D
DuYao 已提交
540 541 542 543 544 545 546 547 548 549

    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_ 

    Parameters:
        d$_{model}$(Variable|int): The dimensionality of input and output feature vector of model. If type is Variable, 
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
        warmup_steps(Variable|int): The number of warmup steps. A super parameter. If type is Variable, 
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
550
            The default value is 1.
D
DuYao 已提交
551 552
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
553 554 555
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0
556

557
    Returns:
D
DuYao 已提交
558
        None.
559

560 561 562 563 564 565 566
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          warmup_steps = 100
          learning_rate = 0.01
          with fluid.dygraph.guard():
567
              emb = fluid.dygraph.Embedding([10, 10])
568 569 570
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.NoamDecay(
                         1/(warmup_steps *(learning_rate ** 2)),
571 572
                         warmup_steps),
                  parameter_list = emb.parameters())
573 574
    """

575 576 577 578 579 580 581
    def __init__(self,
                 d_model,
                 warmup_steps,
                 begin=1,
                 step=1,
                 dtype='float32',
                 learning_rate=1.0):
M
minqiyang 已提交
582
        super(NoamDecay, self).__init__(begin, step, dtype)
583
        self.learning_rate = learning_rate
M
minqiyang 已提交
584 585 586 587 588
        self.d_model = d_model
        self.warmup_steps = warmup_steps

    def step(self):
        from .. import layers
M
minqiyang 已提交
589 590
        a = self.create_lr_var(self.step_num**-0.5)
        b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
591 592
        lr_value = self.learning_rate * (self.d_model
                                         **-0.5) * layers.elementwise_min(a, b)
M
minqiyang 已提交
593
        return lr_value
H
hong 已提交
594 595 596 597


class LinearLrWarmup(LearningRateDecay):
    """
598 599
    :api_attr: imperative

H
hong 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
    
    When global_step < warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
    
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
    
    When global_step >= warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            lr = learning_rate
    
    where lr is the learning_rate after warm-up.
    
    Args:
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
627
            The default value is 1.
H
hong 已提交
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
    
    Returns:
        Variable: Warm-up learning rate with the same data type as learning_rate.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
    
        learning_rate = 0.1 
        warmup_steps = 50
643
        start_lr = 0
H
hong 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
        end_lr = 0.1

        with fluid.dygraph.guard(): 
            lr_decay = fluid.dygraph.LinearLrWarmup( learning_rate, warmup_steps, start_lr, end_lr)
    
       
    """

    def __init__(self,
                 learning_rate,
                 warmup_steps,
                 start_lr,
                 end_lr,
                 begin=1,
                 step=1,
                 dtype='float32'):
        super(LinearLrWarmup, self).__init__(begin, step, dtype)
        type_check = isinstance(learning_rate, float) or isinstance(
            learning_rate, int) or isinstance(learning_rate, LearningRateDecay)
        if not type_check:
            raise TypeError(
                "the type of learning_rate should be [int, float or LearningRateDecay], the current type is {}".
                format(learning_rate))
        self.learning_rate = learning_rate
        self.warmup_steps = warmup_steps
669
        self.start_lr = start_lr
Z
Zeng Jinle 已提交
670 671
        assert end_lr > start_lr, "end_lr {} must be greater than start_lr {}".format(
            end_lr, start_lr)
H
hong 已提交
672 673 674 675 676 677 678 679 680 681
        self.lr_ratio_before_warmup = (
            float(end_lr) - float(start_lr)) / float(warmup_steps)

    def step(self):
        base_lr = self.learning_rate
        if isinstance(self.learning_rate, LearningRateDecay):
            base_lr = base_lr()

        from .. import layers
        if self.step_num < self.warmup_steps:
682
            return self.lr_ratio_before_warmup * self.step_num + self.start_lr
H
hong 已提交
683 684
        else:
            return base_lr
685 686 687 688


class ReduceLROnPlateau(LearningRateDecay):
    """
689 690
    :api_attr: imperative

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    Reduce learning rate when ``loss`` has stopped descending. Models often benefit from reducing the learning rate 
    by 2 to 10 times once model performance has no longer improvement.

    The ``loss`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``loss`` 
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * decay_rate`` . 
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``loss`` stop ascending for a ``patience`` number 
    of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming normal operation.

    Args:
        learning_rate (Variable|float|int): The initial learning rate. It can be set to python float or int number.
            If the type is Variable, it should be 1-D Tensor with shape [1], the data type can be 'float32' or 'float64'.
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the 
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning 
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` . 
            It should be less than 1.0. Default: 0.1.
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced. 
            Default: 10.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` . 
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum 
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
        eps (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is
            ignored. Default: 1e-8.
        dtype (str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. Default: 'float32'. 
    
    Returns:
        Reduced learning rate.

    Examples:
    
    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = fluid.dygraph.Linear(10, 10)
            input = fluid.dygraph.to_variable(x)

            reduce_lr = fluid.dygraph.ReduceLROnPlateau(
                                    learning_rate = 1.0,
                                    decay_rate = 0.5,
                                    patience = 5,
                                    verbose = True, 
                                    cooldown = 3)
            adam = fluid.optimizer.Adam(
                learning_rate = reduce_lr,
                parameter_list = linear.parameters())

            for epoch in range(10):
                total_loss = 0
                for bath_id in range(5):
                    out = linear(input)
                    loss = fluid.layers.reduce_mean(out)
                    total_loss += loss
                    adam.minimize(loss)
                
                avg_loss = total_loss/5

                # adjust learning rate according to avg_loss
                reduce_lr.step(avg_loss)
                lr = adam.current_step_lr()
                print("current avg_loss is %s, current lr is %s" % (avg_loss.numpy()[0], lr))

    """

    def __init__(self,
                 learning_rate,
                 mode='min',
                 decay_rate=0.1,
                 patience=10,
                 verbose=False,
                 threshold=1e-4,
                 threshold_mode='rel',
                 cooldown=0,
                 min_lr=0,
                 eps=1e-8,
                 dtype='float32'):
        super(ReduceLROnPlateau, self).__init__(dtype=dtype)
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode ' + mode + ' is unknown!')
        self.mode = mode

        if decay_rate >= 1.0:
            raise ValueError(
                'new_lr = origin_lr * decay_rate and decay_rate should be < 1.0.'
            )
        self.decay_rate = decay_rate

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
            raise ValueError('threshold mode ' + threshold_mode +
                             ' is unknown!')
        self.threshold_mode = threshold_mode
        check_type(learning_rate, 'learning_rate', (float, int, Variable),
                   'ReduceLROnPlateau')
        if isinstance(learning_rate, (float, int)):
            learning_rate = self.create_lr_var(learning_rate)

        self.learning_rate = learning_rate
        self.verbose = verbose
        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = self.create_lr_var(min_lr)
        self.eps = eps

        self.cooldown_counter = 0
        self.best_loss = None
        self.num_bad_epochs = 0
        self.epoch = 0

    def __call__(self):
        return self.learning_rate

    def step(self, loss):
        """
        It should be invoked on each epoch. Update the learning rate in optimizer according to ``loss`` .  
        The new learning rate will take effect on next call to ``optimizer.minimize`` .

        Args:
            loss (Variable): A ``Variable`` that will be monitored to determine whether the learning rate will reduce. 
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. It should 
                be 1-D Tensor with shape [1]. 
                Specially, if ``mode`` has been set to ``'max'`` ,  the learning rate will reduce when it stops ascending.
        Returns:
            None
        
        Examples:
            Please refer to the example of current LearningRateDecay.
        """

        # loss must be 1-D Tensor with shape [1]
        check_type(loss, 'loss', Variable, 'ReduceLROnPlateau.step')
        assert len(loss.shape) == 1 and loss.shape[0] == 1, "the loss.shape " \
            "should be (1L,), but the current loss.shape is {}. Maybe that "  \
            "you should call fluid.layers.mean to process it first.".format(loss.shape)

        self.epoch += 1
        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best_loss is None or self._is_better(loss, self.best_loss):
                self.best_loss = loss
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                from .. import layers
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
                new_lr = layers.elementwise_max(self.learning_rate *
                                                self.decay_rate, self.min_lr)
                if self.learning_rate - new_lr > self.eps:
                    if self.verbose:
                        print('Epoch {}: reducing learning rate from {} to {}.'.
                              format(self.epoch,
                                     self.learning_rate.numpy()[0],
                                     new_lr.numpy()[0]))
                    self.learning_rate = new_lr

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089


class _LearningRateEpochDecay(LearningRateDecay):
    """
    :api_attr: imperative

    Base class of learning rate decay, which is updated each epoch.
    
    Define the common interface of an _LearningRateEpochDecay.
    User should not use this class directly,
    but need to use one of it's implementation. And invoke method: `epoch()` each epoch.
    """

    def __init__(self, learning_rate, dtype=None):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
                "The type of 'learning_rate' must be 'float, int', but received %s."
                % type(learning_rate))
        if learning_rate >= 1.0:
            raise ValueError("The initial learning rate")

        self.base_lr = float(learning_rate)

        self.epoch_num = -1
        if dtype is None:
            self.dtype = "float32"
        self.learning_rate = self.create_lr_var(self.base_lr)

        self.epoch()

    def __call__(self):
        """ 
        Return last computed learning rate on current epoch.
        """
        return self.learning_rate

    def epoch(self, epoch=None):
        """
        compueted learning_rate and update it when invoked.
        """
        if epoch is None:
            self.epoch_num += 1
        else:
            self.epoch_num = epoch

        self.learning_rate = self.get_lr()
        if isinstance(self.learning_rate, float):
            self.learning_rate = self.create_lr_var(self.learning_rate)

    def get_lr(self):
        raise NotImplementedError


class StepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` every ``step_size`` number of epoch.

    The algorithm can be described as the code below. 

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        decay_rate = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
        step_size (int): Period of learning rate decay..
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` . 
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(9):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
                        adam.minimize(loss)  
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.05
                    # epoch:6, current lr is 0.005
                    # epoch:7, current lr is 0.005
                    # epoch:8, current lr is 0.005

    """

    def __init__(self, learning_rate, step_size, decay_rate=0.1):
        if not isinstance(step_size, int):
            raise TypeError(
                "The type of 'step_size' must be 'int', but received %s." %
                type(step_size))
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.step_size = step_size
        self.decay_rate = decay_rate
        super(StepDecay, self).__init__(learning_rate)

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        i = self.epoch_num // self.step_size
        return self.base_lr * (decay_rate**i)


class MultiStepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` once ``epoch`` reaches one of the milestones.

    The algorithm can be described as the code below. 

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        decay_rate = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number. If it
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` . 
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.MultiStepDecay(0.5, milestones=[3, 5])
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.005

    """

    def __init__(self, learning_rate, milestones, decay_rate=0.1):
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
                % type(milestones))

        if not all([
                milestones[i] < milestones[i + 1]
                for i in range(len(milestones) - 1)
        ]):
            raise ValueError('The elements of milestones must be incremented')
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.milestones = milestones
        self.decay_rate = decay_rate
        super(MultiStepDecay, self).__init__(learning_rate)

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        for i in range(len(self.milestones)):
            if self.epoch_num < self.milestones[i]:
                return self.base_lr * (decay_rate**i)

        return self.base_lr * (decay_rate**len(self.milestones))
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156


class LambdaDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Sets the learning rate of ``optimizer`` to the initial lr times a multiplicative factor, and this multiplicative
    factor is computed by function ``lr_lambda`` . ``lr_lambda`` is funciton which receives ``epoch`` .

    The algorithm can be described as the code below. 

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

        learning_rate = 0.5        # epoch 0
        learning_rate = 0.475      # epoch 1
        learning_rate = 0.45125    # epoch 2

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
        lr_lambda (function): A function which computes a multiplicative factor given an integer parameter ``epoch`` , and 
            then multiply the initial learning rate by this multiplicative factor.
    
    Returns:
        None.

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.LambdaDecay(0.5, lr_lambda=lambda x: 0.95**x)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:%d, current lr is %f" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.475
                    # epoch:2, current lr is 0.45125

    """

    def __init__(self, learning_rate, lr_lambda):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
                % type(lr_lambda))

        self.lr_lambda = lr_lambda
        super(LambdaDecay, self).__init__(learning_rate)

    def get_lr(self):
        base_lr = self.create_lr_var(self.base_lr)

        return self.base_lr * self.lr_lambda(self.epoch_num)