learning_rate_scheduler.py 44.7 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15
import math
16
import warnings
M
minqiyang 已提交
17

H
HongyuJia 已提交
18
import paddle
M
minqiyang 已提交
19
from .. import unique_name
20 21
from ..framework import Variable
from ..data_feeder import check_type
M
minqiyang 已提交
22

23
__all__ = [
24 25 26 27 28 29 30 31 32 33 34 35
    'NoamDecay',
    'PiecewiseDecay',
    'NaturalExpDecay',
    'ExponentialDecay',
    'InverseTimeDecay',
    'PolynomialDecay',
    'CosineDecay',
    'LinearLrWarmup',
    'ReduceLROnPlateau',
    'StepDecay',
    'MultiStepDecay',
    'LambdaDecay',
36
]
M
minqiyang 已提交
37 38


39
class LearningRateDecay:
M
minqiyang 已提交
40 41
    """
    Base class of learning rate decay
42

43 44 45
    Define the common interface of an LearningRateDecay.
    User should not use this class directly,
    but need to use one of it's implementation.
M
minqiyang 已提交
46 47
    """

M
minqiyang 已提交
48 49 50
    def __init__(self, begin=0, step=1, dtype='float32'):
        self.step_num = begin
        self.step_size = step
M
minqiyang 已提交
51 52 53 54 55
        self.dtype = dtype

    def __call__(self):
        lr = self.step()
        if isinstance(lr, float):
M
minqiyang 已提交
56
            lr = self.create_lr_var(lr)
M
minqiyang 已提交
57
        self.step_num += self.step_size
M
minqiyang 已提交
58 59
        return lr

M
minqiyang 已提交
60
    def create_lr_var(self, lr):
61 62 63
        """
        convert lr from float to variable

64
        Args:
65 66 67 68
            lr: learning rate
        Returns:
            learning rate variable
        """
M
minqiyang 已提交
69
        from .. import layers
70

M
minqiyang 已提交
71 72 73 74 75
        lr = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(lr),
            dtype=self.dtype,
76 77
            persistable=False,
        )
M
minqiyang 已提交
78
        return lr
M
minqiyang 已提交
79

80
    # Note: If you want to change what optimizer.state_dict stores, just overwrite this functions,
81
    # "self.step_num" will be stored by default.
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def state_dict(self):
        """
        Returns the state of the scheduler as a :class:`dict`.

        It is a subset of self.__dict__ .
        """
        self._state_keys()
        state_dict = {}
        for key in self.keys:
            if key not in self.__dict__:
                continue
            value = self.__dict__[key]
            if isinstance(value, Variable):
                assert value.shape == [
                    1
                ], "shape of Variable in state_dict must be [1] {}".format(
98 99
                    value.shape
                )
100 101 102 103 104 105 106 107 108 109 110
                value = value.numpy()[0]
            state_dict[key] = value

        return state_dict

    def _state_keys(self):
        """
        set the keys in self.__dict__ that are needed to be saved.
        """
        self.keys = ['step_num']

111
    def set_state_dict(self, state_dict):
112 113 114 115 116 117 118 119 120
        """
        Loads the schedulers state.
        """
        self._state_keys()
        for key in self.keys:
            if key in state_dict:
                self.__dict__[key] = state_dict[key]
            else:
                raise RuntimeError(
121 122 123 124
                    "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict".format(
                        key
                    )
                )
125 126 127 128 129
        if len(state_dict) > len(self.keys):
            warnings.warn(
                "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
            )

130 131 132
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

M
minqiyang 已提交
133 134 135 136
    def step(self):
        raise NotImplementedError()


M
minqiyang 已提交
137
class PiecewiseDecay(LearningRateDecay):
138
    """
139
    :api_attr: imperative
140

D
DuYao 已提交
141
    Piecewise decay scheduler.
142 143 144 145 146

    The algorithm can be described as the code below.

    .. code-block:: text

D
DuYao 已提交
147 148 149 150 151 152 153 154 155 156
        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if global_step < 10000:
            learning_rate = 1.0
        elif 10000 <= global_step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Parameters:
157
        boundaries(list): A list of steps numbers. The type of element in the list is python int.
D
DuYao 已提交
158 159
        values(list): A list of learning rate values that will be picked during
            different step boundaries. The type of element in the list is python float.
T
tianshuo78520a 已提交
160
        begin(int): The begin step to initialize the global_step in the description above.
D
DuYao 已提交
161
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
162
            The default value is 1.
D
DuYao 已提交
163 164
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
165

166
    Returns:
D
DuYao 已提交
167
        None.
168

169 170 171 172 173 174 175
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          with fluid.dygraph.guard():
176
              emb = fluid.dygraph.Embedding( [10, 10] )
177
              optimizer = fluid.optimizer.SGD(
178 179
                 learning_rate=fluid.dygraph.PiecewiseDecay(boundaries, values, 0),
                 parameter_list = emb.parameters() )
180 181
    """

M
minqiyang 已提交
182
    def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
183
        super().__init__(begin, step, dtype)
M
minqiyang 已提交
184 185 186 187 188
        self.boundaries = boundaries
        self.values = values

        self.vars = []
        for value in values:
189
            self.vars.append(value)
M
minqiyang 已提交
190 191

    def step(self):
M
minqiyang 已提交
192 193
        for i in range(len(self.boundaries)):
            if self.step_num < self.boundaries[i]:
M
minqiyang 已提交
194
                return self.vars[i]
195
        return self.create_lr_var(self.vars[len(self.values) - 1])
196 197 198


class NaturalExpDecay(LearningRateDecay):
199
    r"""
200 201
    :api_attr: imperative

202
    Applies natural exponential decay to the initial learning rate.
203

D
DuYao 已提交
204
    The algorithm can be described as following.
205

D
DuYao 已提交
206 207
    .. math::

208
        decayed\_learning\_rate = learning\_rate * e^{y}
D
DuYao 已提交
209 210 211 212 213 214 215 216 217 218 219

    If staircase is set to False, then:

    .. math::

        y = - decay\_rate * \\frac{global\_step}{decay\_steps}

    If staircase is set to True, then:

    .. math::

220
        y = - decay\_rate * math.floor(\\frac{global\_step}{decay\_steps})
D
DuYao 已提交
221 222

    Parameters:
223 224
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
225 226 227
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(int): The decay rate.
228
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
229 230 231
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
232
            The default value is 1.
D
DuYao 已提交
233 234
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
235

236
    Returns:
D
DuYao 已提交
237
        None.
238

239 240 241
    Examples:
        .. code-block:: python

242 243 244 245 246 247 248 249 250 251 252
            import paddle.fluid as fluid
            base_lr = 0.1
            with fluid.dygraph.guard():
                emb = fluid.dygraph.Embedding([10, 10])
                sgd_optimizer = fluid.optimizer.SGD(
                        learning_rate=fluid.dygraph.NaturalExpDecay(
                            learning_rate=base_lr,
                            decay_steps=10000,
                            decay_rate=0.5,
                            staircase=True),
                        parameter_list=emb.parameters())
253 254 255

    """

256 257 258 259 260 261 262 263 264 265
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
266
        super().__init__(begin, step, dtype)
267 268 269 270 271 272 273
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
274

275 276 277
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)
278
        decayed_lr = self.learning_rate * layers.exp(
279 280
            -1 * self.decay_rate * div_res
        )
281 282 283 284 285

        return decayed_lr


class ExponentialDecay(LearningRateDecay):
286
    r"""
287 288
    :api_attr: imperative

289 290
    Applies exponential decay to the learning rate.

D
DuYao 已提交
291
    The algorithm can be described as following.
292

D
DuYao 已提交
293
    .. math::
294

295
        decayed\_learning\_rate = learning\_rate * decay\_rate ^ y
D
DuYao 已提交
296 297 298 299 300

    If staircase is set to False, then:

    .. math::

301
        y = \\frac{global\_step}{decay\_steps}
D
DuYao 已提交
302 303 304 305 306 307 308 309 310

    If staircase is set to True, then:

    .. math::

        y = math.floor(\\frac{global\_step}{decay\_steps})


    Parameters:
311 312
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
313 314 315
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
316
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
317 318 319
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
320
            The default value is 1.
D
DuYao 已提交
321 322
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
323

324
    Returns:
D
DuYao 已提交
325
        None.
326

327 328 329 330 331 332 333
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
              sgd_optimizer = fluid.optimizer.SGD(
334 335 336 337 338
                    learning_rate=fluid.dygraph.ExponentialDecay(
                        learning_rate=base_lr,
                        decay_steps=10000,
                        decay_rate=0.5,
                        staircase=True))
339 340 341

    """

342 343 344 345 346 347 348 349 350 351
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
352
        super().__init__(begin, step, dtype)
353 354 355 356 357 358 359
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
360

361 362 363 364 365 366 367 368 369 370
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate * (self.decay_rate**div_res)

        return decayed_lr


class InverseTimeDecay(LearningRateDecay):
371
    r"""
372 373
    :api_attr: imperative

374 375
    Applies inverse time decay to the initial learning rate.

D
DuYao 已提交
376 377 378 379 380
    The algorithm can be described as following.
    If staircase is set to False, then:

    .. math::

381
        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * \\frac{global\_step}{decay\_step}}
D
DuYao 已提交
382 383 384 385 386 387 388 389

    If staircase is set to True, then:

    .. math::

        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * math.floor(\\frac{global\_step}{decay\_step})}

    Parameters:
390 391
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
392 393 394
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
395
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
396 397 398
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
399
            The default value is 1.
400
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be
D
DuYao 已提交
401
            'float32', 'float64'. The default value is 'float32'.
402

403
    Returns:
D
DuYao 已提交
404
        None.
405

406 407 408 409 410 411
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
412
              emb = fluid.dygraph.Embedding([10, 10])
413
              sgd_optimizer = fluid.optimizer.SGD(
414 415 416 417 418
                  learning_rate=fluid.dygraph.InverseTimeDecay(
                        learning_rate=base_lr,
                        decay_steps=10000,
                        decay_rate=0.5,
                        staircase=True),
419
                  parameter_list = emb.parameters())
420 421 422

    """

423 424 425 426 427 428 429 430 431 432
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
433
        super().__init__(begin, step, dtype)
434 435 436 437 438 439 440
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
441

442 443 444 445 446 447 448 449 450 451
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)

        return decayed_lr


class PolynomialDecay(LearningRateDecay):
452
    r"""
453 454
    :api_attr: imperative

455 456
    Applies polynomial decay to the initial learning rate.

D
DuYao 已提交
457 458 459 460 461 462
    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

463
        decay\_steps & = decay\_steps * math.ceil(\\frac{global\_step}{decay\_steps})
464

D
DuYao 已提交
465 466 467 468 469 470
        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    If cycle is set to False, then:

    .. math::

471
        global\_step & = min(global\_step, decay\_steps)
D
DuYao 已提交
472 473 474 475

        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    Parameters:
476 477
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
478
            float32 or float64. It also can be set to python int number.
479
        decay_steps(int): The decay step size. It determines the decay cycle.
D
DuYao 已提交
480 481 482 483 484
        end_learning_rate(float, optional): The minimum final learning rate. The default value is 0.0001.
        power(float, optional): Power of polynomial. The default value is 1.0.
        cycle(bool, optional): If set true, decay the learning rate every decay_steps. The default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
485
            The default value is 1.
D
DuYao 已提交
486 487
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
488

489
    Returns:
D
DuYao 已提交
490
        None.
491

492 493 494 495 496 497 498 499
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          with fluid.dygraph.guard():
500
              emb = fluid.dygraph.Embedding( [10, 10])
501 502
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.PolynomialDecay(
503 504
                  start_lr, total_step, end_lr, power=1.0),
                  parameter_list = emb.parameters())
505 506 507

    """

508 509 510 511 512 513 514 515 516 517 518
    def __init__(
        self,
        learning_rate,
        decay_steps,
        end_learning_rate=0.0001,
        power=1.0,
        cycle=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
519
        super().__init__(begin, step, dtype)
520 521 522 523 524 525 526 527
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.end_learning_rate = end_learning_rate
        self.power = power
        self.cycle = cycle

    def step(self):
        from .. import layers
528

M
minqiyang 已提交
529 530
        tmp_step_num = self.step_num
        tmp_decay_steps = self.decay_steps
531 532
        if self.cycle:
            div_res = layers.ceil(
533 534
                self.create_lr_var(tmp_step_num / float(self.decay_steps))
            )
535

M
minqiyang 已提交
536 537
            if tmp_step_num == 0:
                div_res = self.create_lr_var(1.0)
M
minqiyang 已提交
538
            tmp_decay_steps = self.decay_steps * div_res
539
        else:
540
            tmp_step_num = self.create_lr_var(
541 542 543 544
                tmp_step_num
                if tmp_step_num < self.decay_steps
                else self.decay_steps
            )
M
minqiyang 已提交
545

546 547 548
        decayed_lr = (self.learning_rate - self.end_learning_rate) * (
            (1 - tmp_step_num / tmp_decay_steps) ** self.power
        ) + self.end_learning_rate
M
minqiyang 已提交
549
        return decayed_lr
550

M
minqiyang 已提交
551 552

class CosineDecay(LearningRateDecay):
553
    r"""
554 555
    :api_attr: imperative

556 557
    Applies cosine decay to the learning rate.

D
DuYao 已提交
558
    The algorithm can be described as following.
559 560 561

    .. math::

D
DuYao 已提交
562
        decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step * \\frac{math.pi}{step\_each\_epoch} ) + 1)
563

D
DuYao 已提交
564
    Parameters:
565 566
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
567 568 569 570 571
            float32 or float64. It also can be set to python int number.
        step_each_epoch(int): The number of steps in an epoch.
        epochs(int): The number of epochs.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
572
            The default value is 1.
D
DuYao 已提交
573 574
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
575

576
    Returns:
D
DuYao 已提交
577
        None.
578

579
    Examples:
580
        .. code-block:: python
581

582
            base_lr = 0.1
583 584
            with fluid.dygraph.guard():
                optimizer  = fluid.optimizer.SGD(
585 586
                    learning_rate = fluid.dygraph.CosineDecay(
                            base_lr, 10000, 120) )
587 588
    """

589 590 591 592 593 594 595 596 597
    def __init__(
        self,
        learning_rate,
        step_each_epoch,
        epochs,
        begin=0,
        step=1,
        dtype='float32',
    ):
598
        super().__init__(begin, step, dtype)
M
minqiyang 已提交
599 600 601 602 603 604
        self.learning_rate = learning_rate
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs

    def step(self):
        from .. import layers
605

M
minqiyang 已提交
606
        cur_epoch = layers.floor(
607 608 609 610 611 612 613
            self.create_lr_var(self.step_num / self.step_each_epoch)
        )
        decayed_lr = (
            self.learning_rate
            * 0.5
            * (layers.cos(cur_epoch * math.pi / self.epochs) + 1)
        )
M
minqiyang 已提交
614 615 616 617
        return decayed_lr


class NoamDecay(LearningRateDecay):
618
    r"""
619 620
    :api_attr: imperative

621
    Applies Noam decay to the initial learning rate.
D
DuYao 已提交
622 623 624 625 626

    The algorithm can be described as following.

    .. math::

627
        decayed\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
D
DuYao 已提交
628

629
    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
D
DuYao 已提交
630 631

    Parameters:
632
        d$_{model}$(Variable|int): The dimensionality of input and output feature vector of model. If type is Variable,
D
DuYao 已提交
633
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
634
        warmup_steps(Variable|int): The number of warmup steps. A super parameter. If type is Variable,
D
DuYao 已提交
635 636 637
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
638
            The default value is 1.
D
DuYao 已提交
639 640
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
641 642 643
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0
644

645
    Returns:
D
DuYao 已提交
646
        None.
647

648 649 650 651 652 653 654
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          warmup_steps = 100
          learning_rate = 0.01
          with fluid.dygraph.guard():
655
              emb = fluid.dygraph.Embedding([10, 10])
656 657 658
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.NoamDecay(
                         1/(warmup_steps *(learning_rate ** 2)),
659 660
                         warmup_steps),
                  parameter_list = emb.parameters())
661 662
    """

663 664 665 666 667 668 669 670 671
    def __init__(
        self,
        d_model,
        warmup_steps,
        begin=1,
        step=1,
        dtype='float32',
        learning_rate=1.0,
    ):
672
        super().__init__(begin, step, dtype)
673
        self.learning_rate = learning_rate
M
minqiyang 已提交
674 675 676 677 678
        self.d_model = d_model
        self.warmup_steps = warmup_steps

    def step(self):
        from .. import layers
679

M
minqiyang 已提交
680 681
        a = self.create_lr_var(self.step_num**-0.5)
        b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
682
        lr_value = (
683
            self.learning_rate * (self.d_model**-0.5) * paddle.minimum(a, b)
684
        )
M
minqiyang 已提交
685
        return lr_value
H
hong 已提交
686 687 688 689


class LinearLrWarmup(LearningRateDecay):
    """
690 691
    :api_attr: imperative

H
hong 已提交
692 693
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
694

H
hong 已提交
695
    When global_step < warmup_steps, learning rate is updated as:
696

H
hong 已提交
697
    .. code-block:: text
698

H
hong 已提交
699 700
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
701

H
hong 已提交
702
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
703

H
hong 已提交
704
    When global_step >= warmup_steps, learning rate is updated as:
705

H
hong 已提交
706
    .. code-block:: text
707

H
hong 已提交
708
            lr = learning_rate
709

H
hong 已提交
710
    where lr is the learning_rate after warm-up.
711

H
hong 已提交
712 713 714 715 716 717 718
    Args:
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
719
            The default value is 1.
H
hong 已提交
720 721
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
722

H
hong 已提交
723 724
    Returns:
        Variable: Warm-up learning rate with the same data type as learning_rate.
725 726


H
hong 已提交
727
    Examples:
728

H
hong 已提交
729
    .. code-block:: python
730

H
hong 已提交
731
        import paddle.fluid as fluid
732 733

        learning_rate = 0.1
H
hong 已提交
734
        warmup_steps = 50
735
        start_lr = 0
H
hong 已提交
736 737
        end_lr = 0.1

738
        with fluid.dygraph.guard():
H
hong 已提交
739
            lr_decay = fluid.dygraph.LinearLrWarmup( learning_rate, warmup_steps, start_lr, end_lr)
740 741


H
hong 已提交
742 743
    """

744 745 746 747 748 749 750 751 752 753
    def __init__(
        self,
        learning_rate,
        warmup_steps,
        start_lr,
        end_lr,
        begin=1,
        step=1,
        dtype='float32',
    ):
754
        super().__init__(begin, step, dtype)
755 756 757 758 759
        type_check = (
            isinstance(learning_rate, float)
            or isinstance(learning_rate, int)
            or isinstance(learning_rate, LearningRateDecay)
        )
H
hong 已提交
760 761
        if not type_check:
            raise TypeError(
762 763 764 765
                "the type of learning_rate should be [int, float or LearningRateDecay], the current type is {}".format(
                    learning_rate
                )
            )
H
hong 已提交
766 767
        self.learning_rate = learning_rate
        self.warmup_steps = warmup_steps
768
        self.start_lr = start_lr
769 770 771 772 773 774
        assert (
            end_lr > start_lr
        ), "end_lr {} must be greater than start_lr {}".format(end_lr, start_lr)
        self.lr_ratio_before_warmup = (float(end_lr) - float(start_lr)) / float(
            warmup_steps
        )
H
hong 已提交
775 776 777 778 779 780 781

    def step(self):
        base_lr = self.learning_rate
        if isinstance(self.learning_rate, LearningRateDecay):
            base_lr = base_lr()

        from .. import layers
782

H
hong 已提交
783
        if self.step_num < self.warmup_steps:
784
            return self.lr_ratio_before_warmup * self.step_num + self.start_lr
H
hong 已提交
785 786
        else:
            return base_lr
787 788 789 790


class ReduceLROnPlateau(LearningRateDecay):
    """
791 792
    :api_attr: imperative

793
    Reduce learning rate when ``loss`` has stopped descending. Models often benefit from reducing the learning rate
794 795
    by 2 to 10 times once model performance has no longer improvement.

796 797 798
    The ``loss`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``loss``
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * decay_rate`` .
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``loss`` stop ascending for a ``patience`` number
799 800 801 802 803 804 805
    of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming normal operation.

    Args:
        learning_rate (Variable|float|int): The initial learning rate. It can be set to python float or int number.
            If the type is Variable, it should be 1-D Tensor with shape [1], the data type can be 'float32' or 'float64'.
806 807
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning
808
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
809
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
810
            It should be less than 1.0. Default: 0.1.
811
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
812 813
            Default: 10.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.
814
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
815 816
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
817
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
818 819 820 821 822 823
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
        eps (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is
            ignored. Default: 1e-8.
        dtype (str, optional): The data type used to create the learning rate variable. The data type can be set as
824 825
            'float32', 'float64'. Default: 'float32'.

826 827 828 829
    Returns:
        Reduced learning rate.

    Examples:
830

831 832 833 834 835 836 837 838 839 840 841 842 843 844
    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = fluid.dygraph.Linear(10, 10)
            input = fluid.dygraph.to_variable(x)

            reduce_lr = fluid.dygraph.ReduceLROnPlateau(
                                    learning_rate = 1.0,
                                    decay_rate = 0.5,
                                    patience = 5,
845
                                    verbose = True,
846 847 848 849 850 851 852 853 854 855 856 857
                                    cooldown = 3)
            adam = fluid.optimizer.Adam(
                learning_rate = reduce_lr,
                parameter_list = linear.parameters())

            for epoch in range(10):
                total_loss = 0
                for bath_id in range(5):
                    out = linear(input)
                    loss = fluid.layers.reduce_mean(out)
                    total_loss += loss
                    adam.minimize(loss)
858

859 860 861 862 863 864 865 866 867
                avg_loss = total_loss/5

                # adjust learning rate according to avg_loss
                reduce_lr.step(avg_loss)
                lr = adam.current_step_lr()
                print("current avg_loss is %s, current lr is %s" % (avg_loss.numpy()[0], lr))

    """

868 869 870 871 872 873 874 875 876 877 878 879 880 881
    def __init__(
        self,
        learning_rate,
        mode='min',
        decay_rate=0.1,
        patience=10,
        verbose=False,
        threshold=1e-4,
        threshold_mode='rel',
        cooldown=0,
        min_lr=0,
        eps=1e-8,
        dtype='float32',
    ):
882
        super().__init__(dtype=dtype)
883 884 885 886 887 888 889 890 891
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode ' + mode + ' is unknown!')
        self.mode = mode

        if decay_rate >= 1.0:
            raise ValueError(
                'new_lr = origin_lr * decay_rate and decay_rate should be < 1.0.'
            )
892
        self.decay_rate = self.create_lr_var(decay_rate)
893 894 895

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
896 897 898
            raise ValueError(
                'threshold mode ' + threshold_mode + ' is unknown!'
            )
899
        self.threshold_mode = threshold_mode
900 901 902 903 904 905
        check_type(
            learning_rate,
            'learning_rate',
            (float, int, Variable),
            'ReduceLROnPlateau',
        )
906 907 908
        if not isinstance(learning_rate, (float, int, Variable)):
            raise TypeError(
                "The type of 'learning_rate' in 'ReduceLROnPlateau' must be 'float, int, Variable', but received %s."
909 910
                % type(learning_rate)
            )
911 912 913 914 915 916 917 918 919 920 921 922 923

        self.learning_rate = learning_rate
        self.verbose = verbose
        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = self.create_lr_var(min_lr)
        self.eps = eps

        self.cooldown_counter = 0
        self.best_loss = None
        self.num_bad_epochs = 0
924 925
        self.epoch_num = 0

926
    # "cooldown_counter / best_loss / num_bad_epochs / epoch_num / learning_rate" will be stored.
927 928
    def _state_keys(self):
        self.keys = [
929 930 931 932 933
            'cooldown_counter',
            'best_loss',
            'num_bad_epochs',
            'epoch_num',
            'learning_rate',
934
        ]
935 936

    def __call__(self):
937 938
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
939 940 941 942
        return self.learning_rate

    def step(self, loss):
        """
943
        It should be invoked on each epoch. Update the learning rate in optimizer according to ``loss`` .
944 945 946
        The new learning rate will take effect on next call to ``optimizer.minimize`` .

        Args:
947 948 949
            loss (Variable): A ``Variable`` that will be monitored to determine whether the learning rate will reduce.
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. It should
                be 1-D Tensor with shape [1].
950 951 952
                Specially, if ``mode`` has been set to ``'max'`` ,  the learning rate will reduce when it stops ascending.
        Returns:
            None
953

954 955 956 957 958 959
        Examples:
            Please refer to the example of current LearningRateDecay.
        """

        # loss must be 1-D Tensor with shape [1]
        check_type(loss, 'loss', Variable, 'ReduceLROnPlateau.step')
960 961 962 963 964 965 966
        assert len(loss.shape) == 1 and loss.shape[0] == 1, (
            "the loss.shape "
            "should be (1L,), but the current loss.shape is {}. Maybe that "
            "you should call paddle.mean to process it first.".format(
                loss.shape
            )
        )
967

968
        self.epoch_num += 1
969 970 971 972 973 974 975 976 977 978 979 980
        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best_loss is None or self._is_better(loss, self.best_loss):
                self.best_loss = loss
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
H
HongyuJia 已提交
981
                new_lr = paddle.maximum(
982 983
                    self.learning_rate * self.decay_rate, self.min_lr
                )
984 985
                if self.learning_rate - new_lr > self.eps:
                    if self.verbose:
986 987 988 989 990 991 992 993 994 995
                        old_lr = (
                            self.learning_rate.numpy()[0]
                            if isinstance(self.learning_rate, Variable)
                            else self.learning_rate
                        )
                        print(
                            'Epoch {}: reducing learning rate from {} to {}.'.format(
                                self.epoch_num, old_lr, new_lr.numpy()[0]
                            )
                        )
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
                    self.learning_rate = new_lr

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold
1010 1011 1012 1013 1014 1015 1016


class _LearningRateEpochDecay(LearningRateDecay):
    """
    :api_attr: imperative

    Base class of learning rate decay, which is updated each epoch.
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026
    Define the common interface of an _LearningRateEpochDecay.
    User should not use this class directly,
    but need to use one of it's implementation. And invoke method: `epoch()` each epoch.
    """

    def __init__(self, learning_rate, dtype=None):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
                "The type of 'learning_rate' must be 'float, int', but received %s."
1027 1028
                % type(learning_rate)
            )
1029 1030
        if learning_rate < 0:
            raise ValueError("Invalid learning rate: {}".format(learning_rate))
1031 1032 1033 1034

        self.base_lr = float(learning_rate)

        self.epoch_num = -1
1035
        self.dtype = dtype
1036 1037 1038 1039 1040 1041
        if dtype is None:
            self.dtype = "float32"
        self.learning_rate = self.create_lr_var(self.base_lr)

        self.epoch()

1042 1043
    # For those subclass who overload _LearningRateEpochDecay, "self.epoch_num/learning_rate" will be stored by default.
    # you can change it for your subclass.
1044 1045 1046
    def _state_keys(self):
        self.keys = ['epoch_num', 'learning_rate']

1047
    def __call__(self):
1048
        """
1049 1050
        Return last computed learning rate on current epoch.
        """
1051 1052
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        return self.learning_rate

    def epoch(self, epoch=None):
        """
        compueted learning_rate and update it when invoked.
        """
        if epoch is None:
            self.epoch_num += 1
        else:
            self.epoch_num = epoch

        self.learning_rate = self.get_lr()

    def get_lr(self):
        raise NotImplementedError


class StepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` every ``step_size`` number of epoch.

1076
    The algorithm can be described as the code below.
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        decay_rate = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1091
        step_size (int): Period of learning rate decay.
1092
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1093 1094 1095 1096 1097 1098 1099
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1100

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(9):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
1114
                        adam.minimize(loss)
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.05
                    # epoch:6, current lr is 0.005
                    # epoch:7, current lr is 0.005
                    # epoch:8, current lr is 0.005

    """

    def __init__(self, learning_rate, step_size, decay_rate=0.1):
        if not isinstance(step_size, int):
            raise TypeError(
1133 1134 1135
                "The type of 'step_size' must be 'int', but received %s."
                % type(step_size)
            )
1136 1137 1138 1139 1140
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.step_size = step_size
        self.decay_rate = decay_rate
1141
        super().__init__(learning_rate)
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        i = self.epoch_num // self.step_size
        return self.base_lr * (decay_rate**i)


class MultiStepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` once ``epoch`` reaches one of the milestones.

1155
    The algorithm can be described as the code below.
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        decay_rate = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Parameters:
1170
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1171
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
1172
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1173 1174 1175 1176 1177 1178 1179
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1180

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.MultiStepDecay(0.5, milestones=[3, 5])
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.005

    """

    def __init__(self, learning_rate, milestones, decay_rate=0.1):
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
1211 1212
                % type(milestones)
            )
1213

1214 1215
        if not all(
            [
1216 1217
                milestones[i] < milestones[i + 1]
                for i in range(len(milestones) - 1)
1218 1219
            ]
        ):
1220 1221 1222 1223 1224 1225
            raise ValueError('The elements of milestones must be incremented')
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.milestones = milestones
        self.decay_rate = decay_rate
1226
        super().__init__(learning_rate)
1227 1228 1229 1230 1231 1232 1233

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        for i in range(len(self.milestones)):
            if self.epoch_num < self.milestones[i]:
                return self.base_lr * (decay_rate**i)

1234
        return self.base_lr * (decay_rate ** len(self.milestones))
1235 1236 1237 1238 1239 1240 1241 1242 1243


class LambdaDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Sets the learning rate of ``optimizer`` to the initial lr times a multiplicative factor, and this multiplicative
    factor is computed by function ``lr_lambda`` . ``lr_lambda`` is funciton which receives ``epoch`` .

1244
    The algorithm can be described as the code below.
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

        learning_rate = 0.5        # epoch 0
        learning_rate = 0.475      # epoch 1
        learning_rate = 0.45125    # epoch 2

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1257
        lr_lambda (function): A function which computes a multiplicative factor given an integer parameter ``epoch`` , and
1258
            then multiply the initial learning rate by this multiplicative factor.
1259

1260 1261 1262 1263 1264
    Returns:
        None.

    Examples:
        .. code-block:: python
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.LambdaDecay(0.5, lr_lambda=lambda x: 0.95**x)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:%d, current lr is %f" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.475
                    # epoch:2, current lr is 0.45125

    """

    def __init__(self, learning_rate, lr_lambda):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
1293 1294
                % type(lr_lambda)
            )
1295 1296

        self.lr_lambda = lr_lambda
1297
        super().__init__(learning_rate)
1298 1299 1300 1301 1302

    def get_lr(self):
        base_lr = self.create_lr_var(self.base_lr)

        return self.base_lr * self.lr_lambda(self.epoch_num)