logic.py 34.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
17
from .layer_function_generator import templatedoc
Z
zhiboniu 已提交
18
from ..static import Variable
W
Weilong Wu 已提交
19
# TODO: define logic functions of a tensor
20 21 22
from ..fluid.framework import _in_eager_mode_
if _in_eager_mode_:
    Tensor = paddle.fluid.framework.core.eager.Tensor
W
Weilong Wu 已提交
23 24
else:
    from ..framework import VarBase as Tensor
25 26 27 28

from ..framework import in_dygraph_mode, _non_static_mode
from ..framework import LayerHelper
from ..fluid.framework import _in_legacy_dygraph
29
# TODO: define logic functions of a tensor
30
from paddle import _C_ops, _legacy_C_ops
31
from paddle.tensor.creation import full
32

33 34
__all__ = []

35

36
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
37
    if in_dygraph_mode():
38 39 40 41 42
        op = getattr(_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
43 44 45 46 47 48
    elif _in_legacy_dygraph():
        op = getattr(_legacy_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
49 50 51 52
    check_variable_and_dtype(
        x, "x",
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
        op_name)
53
    if y is not None:
54 55 56 57
        check_variable_and_dtype(
            y, "y",
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
            op_name)
58 59 60 61 62 63 64 65 66 67 68 69 70 71
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())

    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
            % (op_name, x.dtype, y.dtype))

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
72 73 74 75 76 77
        helper.append_op(type=op_name,
                         inputs={
                             "X": x,
                             "Y": y
                         },
                         outputs={"Out": out})
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


def logical_and(x, y, out=None, name=None):
    r"""

    ``logical_and`` operator computes element-wise logical AND on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x \&\& y

94
    Note:
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True])
            y = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_and(x, y)
            print(res) # [True False True False]
    """
    if in_dygraph_mode():
117
        return _C_ops.logical_and(x, y)
118

119 120 121 122 123 124
    return _logical_op(op_name="logical_and",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
125 126 127 128 129 130 131 132 133 134 135 136


def logical_or(x, y, out=None, name=None):
    """

    ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x || y

137
    Note:
138
        ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153
    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

154 155
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
156
            res = paddle.logical_or(x, y)
157 158 159 160
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[True , True ],
            #         [True , False]])
161 162
    """
    if in_dygraph_mode():
163
        return _C_ops.logical_or(x, y)
164 165 166 167 168 169
    return _logical_op(op_name="logical_or",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
170 171 172 173 174 175 176 177 178 179 180 181


def logical_xor(x, y, out=None, name=None):
    r"""

    ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = (x || y) \&\& !(x \&\& y)

182
    Note:
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

199 200
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
201
            res = paddle.logical_xor(x, y)
202 203 204 205
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[False, True ],
            #         [True , False]])
206 207
    """
    if in_dygraph_mode():
208
        return _C_ops.logical_xor(x, y)
209

210 211 212 213 214 215
    return _logical_op(op_name="logical_xor",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246


@templatedoc()
def logical_not(x, out=None, name=None):
    """

    ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``out`` is N-dim boolean ``Variable``.
    Each element of ``out`` is calculated by

    .. math::

        out = !x

    Args:
        x(Tensor):  Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float32, or float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_not(x)
            print(res) # [False  True False  True]
    """
    if in_dygraph_mode():
247
        return _C_ops.logical_not(x)
248 249 250 251 252 253
    return _logical_op(op_name="logical_not",
                       x=x,
                       y=None,
                       name=name,
                       out=out,
                       binary_op=False)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287


def is_empty(x, name=None):
    """

    Test whether a Tensor is empty.

    Args:
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])

    """
    if in_dygraph_mode():
        return _C_ops.is_empty(x)
288 289
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
290 291 292 293 294 295 296 297

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
    check_type(name, "name", (str, type(None)), "is_empty")

    helper = LayerHelper("is_empty", **locals())
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
298 299 300
    helper.append_op(type='is_empty',
                     inputs={'X': [x]},
                     outputs={'Out': [cond]})
301 302 303
    return cond


W
wawltor 已提交
304
def equal_all(x, y, name=None):
305
    """
306
    Returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
307

308
    Note:
309
        The output has no gradient.
310 311

    Args:
312 313
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
314 315
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
316 317

    Returns:
W
wawltor 已提交
318
        Tensor: output Tensor, data type is bool, value is [False] or [True].
319 320 321 322 323

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
324

325 326 327
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
328
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
329
          print(result1) # result1 = [True ]
W
wawltor 已提交
330
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
331
          print(result2) # result2 = [False ]
332
    """
H
hong 已提交
333
    if in_dygraph_mode():
334
        return _C_ops.equal_all(x, y)
H
hong 已提交
335

Z
zhiboniu 已提交
336
    if paddle.in_dynamic_mode():
337
        return _legacy_C_ops.equal_all(x, y)
W
wawltor 已提交
338 339

    helper = LayerHelper("equal_all", **locals())
340
    out = helper.create_variable_for_type_inference(dtype='bool')
341 342 343 344 345 346
    helper.append_op(type='equal_all',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [out]})
347
    return out
Z
Zhen Wang 已提交
348 349 350


@templatedoc()
351
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
352 353 354 355
    """
    ${comment}

    Args:
356 357
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
358 359
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
360 361 362
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
363 364

    Returns:
365 366
        Tensor: ${out_comment}.

Z
Zhen Wang 已提交
367 368 369 370 371
    Examples:
        .. code-block:: python

          import paddle

372 373
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
374
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
375
                                  equal_nan=False, name="ignore_nan")
376
          # [False]
377

378
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
379
                                      equal_nan=True, name="equal_nan")
380 381
          # [False]

382 383
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
384 385 386
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [False]
387

388 389 390
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True]
Z
Zhen Wang 已提交
391 392
    """

393
    if in_dygraph_mode():
394
        return _C_ops.allclose(x, y, rtol, atol, equal_nan)
395
    if _in_legacy_dygraph():
396 397
        return _legacy_C_ops.allclose(x, y, 'rtol', str(rtol), 'atol',
                                      str(atol), 'equal_nan', equal_nan)
398 399
    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
400 401 402 403 404 405 406
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

407
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
408
    outputs = {'Out': out}
409
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
410 411 412 413
    helper.append_op(type='allclose',
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
Z
Zhen Wang 已提交
414 415

    return out
416 417


W
wawltor 已提交
418 419
@templatedoc()
def equal(x, y, name=None):
420
    """
S
swtkiwi 已提交
421

422
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
423

424
    Note:
425
        The output has no gradient.
426 427

    Args:
428 429
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
430 431 432 433
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
434
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
435
        and the data type is bool. The result of this op is stop_gradient.
436 437 438 439

    Examples:
        .. code-block:: python

W
wawltor 已提交
440 441
          import paddle

442 443
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
444
          result1 = paddle.equal(x, y)
N
Noel 已提交
445
          print(result1)  # result1 = [True False False]
446
    """
447 448
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
449 450
            "Type of input args must be float, bool, int or Tensor, but received type {}"
            .format(type(y)))
451 452 453
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

J
Jiabin Yang 已提交
454
    if in_dygraph_mode():
455
        default_axis = -1
456
        return _C_ops.equal(x, y, default_axis)
J
Jiabin Yang 已提交
457 458
    else:
        if _in_legacy_dygraph():
459
            return _legacy_C_ops.equal(x, y)
J
Jiabin Yang 已提交
460 461 462 463 464 465 466 467 468 469 470
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "equal")
            helper = LayerHelper("equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

471 472 473 474 475 476
            helper.append_op(type='equal',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
477
            return out
478

W
wawltor 已提交
479 480 481 482

@templatedoc()
def greater_equal(x, y, name=None):
    """
483
    Returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
484

485
    Note:
486
        The output has no gradient.
W
wawltor 已提交
487 488

    Args:
489 490
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
491 492 493
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
494
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
495 496 497

    Examples:
        .. code-block:: python
N
Noel 已提交
498

W
wawltor 已提交
499 500
            import paddle

501 502
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
503
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
504
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
505
    """
J
Jiabin Yang 已提交
506
    if in_dygraph_mode():
507
        default_axis = -1
508
        return _C_ops.greater_equal(x, y, default_axis)
J
Jiabin Yang 已提交
509 510
    else:
        if _in_legacy_dygraph():
511
            return _legacy_C_ops.greater_equal(x, y)
J
Jiabin Yang 已提交
512 513 514 515 516 517 518 519 520 521 522
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal")
            helper = LayerHelper("greater_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

523 524 525 526 527 528
            helper.append_op(type='greater_equal',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
529
            return out
W
wawltor 已提交
530 531 532 533 534


@templatedoc()
def greater_than(x, y, name=None):
    """
535
    Returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
536

537
    Note:
538
        The output has no gradient.
W
wawltor 已提交
539 540

    Args:
541 542
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
543 544 545
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
546
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
547 548 549

    Examples:
        .. code-block:: python
N
Noel 已提交
550

W
wawltor 已提交
551 552
            import paddle

553 554
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
555
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
556
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
557
    """
J
Jiabin Yang 已提交
558
    if in_dygraph_mode():
559
        return _C_ops.greater_than(x, y, -1)
J
Jiabin Yang 已提交
560 561
    else:
        if _in_legacy_dygraph():
562
            return _legacy_C_ops.greater_than(x, y)
J
Jiabin Yang 已提交
563 564 565 566 567 568 569 570 571 572 573
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "greater_than")
            helper = LayerHelper("greater_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

574 575 576 577 578 579
            helper.append_op(type='greater_than',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
580
            return out
W
wawltor 已提交
581 582 583 584 585


@templatedoc()
def less_equal(x, y, name=None):
    """
586
    Returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
587

588
    Note:
589
        The output has no gradient.
W
wawltor 已提交
590 591

    Args:
592 593
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
594 595 596 597
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
598
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
599 600 601

    Examples:
        .. code-block:: python
N
Noel 已提交
602

W
wawltor 已提交
603 604
            import paddle

605 606
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
607
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
608
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
609
    """
J
Jiabin Yang 已提交
610
    if in_dygraph_mode():
0
0x45f 已提交
611
        axis = -1
612
        return _C_ops.less_equal(x, y, axis)
J
Jiabin Yang 已提交
613 614
    else:
        if _in_legacy_dygraph():
615
            return _legacy_C_ops.less_equal(x, y)
J
Jiabin Yang 已提交
616 617 618 619 620 621 622 623 624 625 626
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_equal")
            helper = LayerHelper("less_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

627 628 629 630 631 632
            helper.append_op(type='less_equal',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
633
            return out
W
wawltor 已提交
634 635 636 637 638


@templatedoc()
def less_than(x, y, name=None):
    """
639
    Returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
640

641
    Note:
642
        The output has no gradient.
W
wawltor 已提交
643 644

    Args:
645 646
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
647 648 649 650
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
651
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
652 653 654

    Examples:
        .. code-block:: python
N
Noel 已提交
655

W
wawltor 已提交
656 657
            import paddle

658 659
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
660
            result1 = paddle.less_than(x, y)
N
Noel 已提交
661
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
662
    """
J
Jiabin Yang 已提交
663
    if in_dygraph_mode():
664
        default_axis = -1
665
        return _C_ops.less_than(x, y, default_axis)
J
Jiabin Yang 已提交
666 667
    else:
        if _in_legacy_dygraph():
668
            return _legacy_C_ops.less_than(x, y)
J
Jiabin Yang 已提交
669 670 671 672 673 674 675 676 677 678 679
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "less_than")
            helper = LayerHelper("less_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

680 681 682 683 684 685
            helper.append_op(type='less_than',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
686
            return out
W
wawltor 已提交
687 688 689 690 691


@templatedoc()
def not_equal(x, y, name=None):
    """
692
    Returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
693 694

    Note:
695
        The output has no gradient.
W
wawltor 已提交
696 697

    Args:
698 699
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
700 701 702 703
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
704
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
705 706 707

    Examples:
        .. code-block:: python
708

W
wawltor 已提交
709 710
            import paddle

711 712
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
713
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
714
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
715
    """
J
Jiabin Yang 已提交
716
    if in_dygraph_mode():
0
0x45f 已提交
717
        axis = -1
718
        return _C_ops.not_equal(x, y, axis)
J
Jiabin Yang 已提交
719 720
    else:
        if _in_legacy_dygraph():
721
            return _legacy_C_ops.not_equal(x, y)
J
Jiabin Yang 已提交
722 723 724 725 726 727 728 729 730 731 732
        else:
            check_variable_and_dtype(
                x, "x", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            check_variable_and_dtype(
                y, "y", ["bool", "float32", "float64", "int32", "int64"],
                "not_equal")
            helper = LayerHelper("not_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

733 734 735 736 737 738
            helper.append_op(type='not_equal',
                             inputs={
                                 'X': [x],
                                 'Y': [y]
                             },
                             outputs={'Out': [out]})
J
Jiabin Yang 已提交
739
            return out
Z
zhulei 已提交
740 741 742 743 744


def is_tensor(x):
    """

C
Chen Long 已提交
745
    Tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
746 747 748 749 750

    Args:
        x (object): Object to test.

    Returns:
C
Chen Long 已提交
751
        A boolean value. True if ``x`` is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
765

Z
zhulei 已提交
766
    """
H
hong 已提交
767
    return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
768 769 770


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
771
    if in_dygraph_mode():
W
wanghuancoder 已提交
772
        op = getattr(_C_ops, op_name)
773 774 775 776
        if binary_op:
            return op(x, y)
        else:
            return op(x)
777 778 779 780 781 782
    elif _in_legacy_dygraph():
        op = getattr(_legacy_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

    check_variable_and_dtype(
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name)
    if y is not None:
        check_variable_and_dtype(
            y, "y", ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name)
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
801 802 803 804 805 806
        helper.append_op(type=op_name,
                         inputs={
                             "X": x,
                             "Y": y
                         },
                         outputs={"Out": out})
807 808 809 810 811 812 813 814 815 816
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
817

818 819 820 821 822 823 824
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
825

826 827 828 829 830 831 832 833 834
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
0
0x45f 已提交
835
    if in_dygraph_mode() and out is None:
836
        return _C_ops.bitwise_and(x, y)
837 838 839 840 841 842
    return _bitwise_op(op_name="bitwise_and",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
843 844 845 846 847 848


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
849

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
0
0x45f 已提交
867
    if in_dygraph_mode() and out is None:
868
        return _C_ops.bitwise_or(x, y)
H
hong 已提交
869

870 871 872 873 874 875
    return _bitwise_op(op_name="bitwise_or",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
0
0x45f 已提交
900
    if in_dygraph_mode() and out is None:
901
        return _C_ops.bitwise_xor(x, y)
902 903 904 905 906 907
    return _bitwise_op(op_name="bitwise_xor",
                       x=x,
                       y=y,
                       name=name,
                       out=out,
                       binary_op=True)
908 909 910 911 912 913 914 915 916 917


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
918

919 920 921 922 923 924 925 926 927 928 929
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
0
0x45f 已提交
930
    if in_dygraph_mode() and out is None:
931
        return _C_ops.bitwise_not(x)
932

933 934 935 936 937 938
    return _bitwise_op(op_name="bitwise_not",
                       x=x,
                       y=None,
                       name=name,
                       out=out,
                       binary_op=False)
A
andyjpaddle 已提交
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: ${out_comment}.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, True]
    """

982
    if in_dygraph_mode():
983
        return _C_ops.isclose(x, y, rtol, atol, equal_nan)
984
    if _in_legacy_dygraph():
985 986
        return _legacy_C_ops.isclose(x, y, 'rtol', str(rtol), 'atol', str(atol),
                                     'equal_nan', equal_nan)
A
andyjpaddle 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
    check_type(rtol, 'rtol', float, 'isclose')
    check_type(atol, 'atol', float, 'isclose')
    check_type(equal_nan, 'equal_nan', bool, 'isclose')

    helper = LayerHelper("isclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': x, 'Other': y}
    outputs = {'Out': out}
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
1000 1001 1002 1003
    helper.append_op(type='isclose',
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
A
andyjpaddle 已提交
1004
    return out