test_word2vec.py 5.4 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
QI JUN 已提交
15
import paddle.v2 as paddle
16
import paddle.v2.fluid as fluid
Y
Yang Yu 已提交
17
import unittest
Y
Yang Yu 已提交
18
import os
Q
QI JUN 已提交
19

Y
Yang Yu 已提交
20

Y
Yang Yu 已提交
21
def main(use_cuda, is_sparse, parallel):
Y
Yang Yu 已提交
22 23 24 25 26 27 28 29
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
Y
Yang Yu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    IS_SPARSE = is_sparse

    def __network__(words):
        embed_first = fluid.layers.embedding(
            input=words[0],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_second = fluid.layers.embedding(
            input=words[1],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_third = fluid.layers.embedding(
            input=words[2],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_forth = fluid.layers.embedding(
            input=words[3],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')

        concat_embed = fluid.layers.concat(
            input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
        hidden1 = fluid.layers.fc(input=concat_embed,
                                  size=HIDDEN_SIZE,
                                  act='sigmoid')
        predict_word = fluid.layers.fc(input=hidden1,
                                       size=dict_size,
                                       act='softmax')
        cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
        avg_cost = fluid.layers.mean(x=cost)
        return avg_cost
Y
Yang Yu 已提交
69 70 71 72 73 74 75 76 77 78

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')

Y
Yang Yu 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    if not parallel:
        avg_cost = __network__(
            [first_word, second_word, third_word, forth_word, next_word])
    else:
        places = fluid.layers.get_places()
        pd = fluid.layers.ParallelDo(places)
        with pd.do():
            avg_cost = __network__(
                map(pd.read_input, [
                    first_word, second_word, third_word, forth_word, next_word
                ]))
            pd.write_output(avg_cost)

        avg_cost = fluid.layers.mean(x=pd())

Y
Yang Yu 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
    sgd_optimizer.minimize(avg_cost)

    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
        place=place)

    exe.run(fluid.default_startup_program())

    for pass_id in range(PASS_NUM):
        for data in train_reader():
            avg_cost_np = exe.run(fluid.default_main_program(),
                                  feed=feeder.feed(data),
                                  fetch_list=[avg_cost])
            if avg_cost_np[0] < 5.0:
                return
    raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))


Y
Yang Yu 已提交
118
FULL_TEST = os.getenv('FULL_TEST',
Y
Yang Yu 已提交
119
                      '0').lower() in ['true', '1', 't', 'y', 'yes', 'on']
Y
Yang Yu 已提交
120
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
Y
Yang Yu 已提交
121 122 123


class W2VTest(unittest.TestCase):
Y
Yang Yu 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    pass


def inject_test_method(use_cuda, is_sparse, parallel):
    fn_name = "test_{0}_{1}_{2}".format("cuda" if use_cuda else "cpu", "sparse"
                                        if is_sparse else "dense", "parallel"
                                        if parallel else "normal")

    def __impl__(*args, **kwargs):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                main(use_cuda=use_cuda, is_sparse=is_sparse, parallel=parallel)

    if use_cuda and is_sparse and parallel:
        fn = __impl__
    else:
        # skip the other test when on CI server
        fn = unittest.skipUnless(
            condition=FULL_TEST, reason=SKIP_REASON)(__impl__)

    setattr(W2VTest, fn_name, fn)
Y
Yang Yu 已提交
148 149


Y
Yang Yu 已提交
150 151 152 153
for use_cuda in (False, True):
    for is_sparse in (False, True):
        for parallel in (False, True):
            inject_test_method(use_cuda, is_sparse, parallel)
Y
Yang Yu 已提交
154 155 156

if __name__ == '__main__':
    unittest.main()