test_word2vec.py 2.9 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15
import numpy as np
Q
QI JUN 已提交
16
import paddle.v2 as paddle
17
import paddle.v2.fluid as fluid
Q
QI JUN 已提交
18

19 20 21
PASS_NUM = 100
EMBED_SIZE = 32
HIDDEN_SIZE = 256
Q
QI JUN 已提交
22
N = 5
23 24
BATCH_SIZE = 32
IS_SPARSE = True
Q
QI JUN 已提交
25 26 27 28

word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)

29 30 31 32 33
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
Q
QI JUN 已提交
34

35
embed_first = fluid.layers.embedding(
Q
QI JUN 已提交
36
    input=first_word,
37
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
38
    dtype='float32',
39
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
40
    param_attr='shared_w')
41
embed_second = fluid.layers.embedding(
Q
QI JUN 已提交
42
    input=second_word,
43
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
44
    dtype='float32',
45
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
46
    param_attr='shared_w')
47
embed_third = fluid.layers.embedding(
Q
QI JUN 已提交
48
    input=third_word,
49
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
50
    dtype='float32',
51
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
52
    param_attr='shared_w')
53
embed_forth = fluid.layers.embedding(
Q
QI JUN 已提交
54
    input=forth_word,
55
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
56
    dtype='float32',
57
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
58
    param_attr='shared_w')
Q
QI JUN 已提交
59

60
concat_embed = fluid.layers.concat(
Q
Qiao Longfei 已提交
61
    input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
62 63 64 65 66 67
hidden1 = fluid.layers.fc(input=concat_embed, size=HIDDEN_SIZE, act='sigmoid')
predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
avg_cost = fluid.layers.mean(x=cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
Q
QI JUN 已提交
68 69

train_reader = paddle.batch(
70
    paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
Q
QI JUN 已提交
71

72 73
place = fluid.CPUPlace()
exe = fluid.Executor(place)
Y
Yu Yang 已提交
74 75 76
feeder = fluid.DataFeeder(
    feed_list=[first_word, second_word, third_word, forth_word, next_word],
    place=place)
Q
QI JUN 已提交
77

78
exe.run(fluid.default_startup_program())
79

Q
QI JUN 已提交
80 81
for pass_id in range(PASS_NUM):
    for data in train_reader():
82
        avg_cost_np = exe.run(fluid.default_main_program(),
Y
Yu Yang 已提交
83
                              feed=feeder.feed(data),
84
                              fetch_list=[avg_cost])
Q
QI JUN 已提交
85
        if avg_cost_np[0] < 5.0:
Q
QI JUN 已提交
86 87
            exit(0)  # if avg cost less than 10.0, we think our code is good.
exit(1)