test_word2vec.py 2.9 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
Q
Qiao Longfei 已提交
14
import numpy as np
Q
QI JUN 已提交
15
import paddle.v2 as paddle
16
import paddle.v2.fluid as fluid
Q
QI JUN 已提交
17

18 19 20
PASS_NUM = 100
EMBED_SIZE = 32
HIDDEN_SIZE = 256
Q
QI JUN 已提交
21
N = 5
22 23
BATCH_SIZE = 32
IS_SPARSE = True
Q
QI JUN 已提交
24 25 26 27

word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)

28 29 30 31 32
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
Q
QI JUN 已提交
33

34
embed_first = fluid.layers.embedding(
Q
QI JUN 已提交
35
    input=first_word,
36
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
37
    dtype='float32',
38
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
39
    param_attr='shared_w')
40
embed_second = fluid.layers.embedding(
Q
QI JUN 已提交
41
    input=second_word,
42
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
43
    dtype='float32',
44
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
45
    param_attr='shared_w')
46
embed_third = fluid.layers.embedding(
Q
QI JUN 已提交
47
    input=third_word,
48
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
49
    dtype='float32',
50
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
51
    param_attr='shared_w')
52
embed_forth = fluid.layers.embedding(
Q
QI JUN 已提交
53
    input=forth_word,
54
    size=[dict_size, EMBED_SIZE],
F
fengjiayi 已提交
55
    dtype='float32',
56
    is_sparse=IS_SPARSE,
Y
Yu Yang 已提交
57
    param_attr='shared_w')
Q
QI JUN 已提交
58

59
concat_embed = fluid.layers.concat(
Q
Qiao Longfei 已提交
60
    input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
61 62 63 64 65 66
hidden1 = fluid.layers.fc(input=concat_embed, size=HIDDEN_SIZE, act='sigmoid')
predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
avg_cost = fluid.layers.mean(x=cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
Q
QI JUN 已提交
67 68

train_reader = paddle.batch(
69
    paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
Q
QI JUN 已提交
70

71 72
place = fluid.CPUPlace()
exe = fluid.Executor(place)
Y
Yu Yang 已提交
73 74 75
feeder = fluid.DataFeeder(
    feed_list=[first_word, second_word, third_word, forth_word, next_word],
    place=place)
Q
QI JUN 已提交
76

77
exe.run(fluid.default_startup_program())
78

Q
QI JUN 已提交
79 80
for pass_id in range(PASS_NUM):
    for data in train_reader():
81
        avg_cost_np = exe.run(fluid.default_main_program(),
Y
Yu Yang 已提交
82
                              feed=feeder.feed(data),
83
                              fetch_list=[avg_cost])
Q
QI JUN 已提交
84
        if avg_cost_np[0] < 5.0:
Q
QI JUN 已提交
85 86
            exit(0)  # if avg cost less than 10.0, we think our code is good.
exit(1)