test_word2vec.py 3.8 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
QI JUN 已提交
15
import paddle.v2 as paddle
16
import paddle.v2.fluid as fluid
Y
Yang Yu 已提交
17
import unittest
Q
QI JUN 已提交
18

Y
Yang Yu 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

def main_impl(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
    IS_SPARSE = True

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')

    embed_first = fluid.layers.embedding(
        input=first_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr='shared_w')
    embed_second = fluid.layers.embedding(
        input=second_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr='shared_w')
    embed_third = fluid.layers.embedding(
        input=third_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr='shared_w')
    embed_forth = fluid.layers.embedding(
        input=forth_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=IS_SPARSE,
        param_attr='shared_w')

    concat_embed = fluid.layers.concat(
        input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
    hidden1 = fluid.layers.fc(input=concat_embed,
                              size=HIDDEN_SIZE,
                              act='sigmoid')
    predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
    avg_cost = fluid.layers.mean(x=cost)
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
    sgd_optimizer.minimize(avg_cost)

    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
        place=place)

    exe.run(fluid.default_startup_program())

    for pass_id in range(PASS_NUM):
        for data in train_reader():
            avg_cost_np = exe.run(fluid.default_main_program(),
                                  feed=feeder.feed(data),
                                  fetch_list=[avg_cost])
            if avg_cost_np[0] < 5.0:
                return
    raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))


def main(*args, **kwargs):
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            main_impl(*args, **kwargs)


class W2VTest(unittest.TestCase):
    def test_cpu_normal(self):
        main(use_cuda=False)

    def test_gpu_normal(self):
        main(use_cuda=True)


if __name__ == '__main__':
    unittest.main()