Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
7c0cc113
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7c0cc113
编写于
1月 30, 2018
作者:
Y
Yang Yu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Test word2vec for parallel.do
* Polish sum_op support SelectedRows in_place
上级
32585ece
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
125 addition
and
57 deletion
+125
-57
paddle/operators/sum_op.h
paddle/operators/sum_op.h
+38
-11
python/paddle/v2/fluid/tests/book/test_word2vec.py
python/paddle/v2/fluid/tests/book/test_word2vec.py
+87
-46
未找到文件。
paddle/operators/sum_op.h
浏览文件 @
7c0cc113
...
...
@@ -68,7 +68,32 @@ class SumKernel : public framework::OpKernel<T> {
}
}
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
PADDLE_ENFORCE
(
!
in_place
,
"SelectedRows not support inplace sum now"
);
std
::
unique_ptr
<
framework
::
SelectedRows
>
in0
;
if
(
in_place
)
{
// If is in_place, we store the input[0] to in0
auto
&
in_sel0
=
in_vars
[
0
]
->
Get
<
SelectedRows
>
();
auto
&
rows
=
in_sel0
.
rows
();
#ifdef PADDLE_WITH_CUDA
std
::
vector
<
int64_t
>
rows_in_cpu
;
rows_in_cpu
.
reserve
(
rows
.
size
());
for
(
auto
item
:
rows
)
{
rows_in_cpu
.
push_back
(
item
);
}
in0
.
reset
(
new
framework
::
SelectedRows
(
rows_in_cpu
,
in_sel0
.
height
()));
#else
in0
.
reset
(
new
framework
::
SelectedRows
(
rows
,
in_sel0
.
height
()));
#endif
in0
->
mutable_value
()
->
ShareDataWith
(
in_sel0
.
value
());
}
auto
get_selected_row
=
[
&
](
size_t
i
)
->
const
SelectedRows
&
{
if
(
i
==
0
&&
in0
)
{
return
*
in0
.
get
();
}
else
{
return
in_vars
[
i
]
->
Get
<
SelectedRows
>
();
}
};
auto
*
out
=
context
.
Output
<
SelectedRows
>
(
"Out"
);
out
->
mutable_rows
()
->
clear
();
auto
*
out_value
=
out
->
mutable_value
();
...
...
@@ -76,24 +101,26 @@ class SumKernel : public framework::OpKernel<T> {
// Runtime InferShape
size_t
first_dim
=
0
;
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
first_dim
+=
in_vars
[
i
]
->
Get
<
SelectedRows
>
().
rows
().
size
();
auto
&
sel_row
=
get_selected_row
(
i
);
first_dim
+=
sel_row
.
rows
().
size
();
}
auto
in_dim
=
in_vars
[
0
]
->
Get
<
SelectedRows
>
().
value
().
dims
();
auto
in_dim_vec
=
framework
::
vectorize
(
in_dim
);
in_dim
_vec
[
0
]
=
static_cast
<
int64_t
>
(
first_dim
);
auto
in_dim
=
framework
::
vectorize
(
get_selected_row
(
N
-
1
).
value
().
dims
()
);
in_dim
[
0
]
=
static_cast
<
int64_t
>
(
first_dim
);
out_value
->
Resize
(
framework
::
make_ddim
(
in_dim
_vec
));
out_value
->
Resize
(
framework
::
make_ddim
(
in_dim
));
out_value
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
SelectedRowsAddTo
<
DeviceContext
,
T
>
functor
;
int64_t
offset
=
0
;
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
PADDLE_ENFORCE_EQ
(
out
->
height
(),
in_vars
[
i
]
->
Get
<
SelectedRows
>
().
height
());
functor
(
context
.
template
device_context
<
DeviceContext
>(),
in_vars
[
i
]
->
Get
<
SelectedRows
>
(),
offset
,
out
);
offset
+=
in_vars
[
i
]
->
Get
<
SelectedRows
>
().
value
().
numel
();
auto
&
sel_row
=
get_selected_row
(
i
);
PADDLE_ENFORCE_EQ
(
out
->
height
(),
sel_row
.
height
());
functor
(
context
.
template
device_context
<
DeviceContext
>(),
sel_row
,
offset
,
out
);
offset
+=
sel_row
.
value
().
numel
();
}
}
else
if
(
out_var
->
IsType
<
framework
::
LoDTensorArray
>
())
{
auto
&
out_array
=
*
out_var
->
GetMutable
<
framework
::
LoDTensorArray
>
();
...
...
python/paddle/v2/fluid/tests/book/test_word2vec.py
浏览文件 @
7c0cc113
...
...
@@ -15,9 +15,10 @@
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
import
unittest
import
os
def
main
_impl
(
use_cuda
):
def
main
(
use_cuda
,
is_sparse
,
parallel
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
...
...
@@ -26,7 +27,45 @@ def main_impl(use_cuda):
HIDDEN_SIZE
=
256
N
=
5
BATCH_SIZE
=
32
IS_SPARSE
=
True
IS_SPARSE
=
is_sparse
def
__network__
(
words
):
embed_first
=
fluid
.
layers
.
embedding
(
input
=
words
[
0
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_second
=
fluid
.
layers
.
embedding
(
input
=
words
[
1
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_third
=
fluid
.
layers
.
embedding
(
input
=
words
[
2
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_forth
=
fluid
.
layers
.
embedding
(
input
=
words
[
3
],
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
concat_embed
=
fluid
.
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
axis
=
1
)
hidden1
=
fluid
.
layers
.
fc
(
input
=
concat_embed
,
size
=
HIDDEN_SIZE
,
act
=
'sigmoid'
)
predict_word
=
fluid
.
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
words
[
4
])
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
avg_cost
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
...
...
@@ -37,39 +76,21 @@ def main_impl(use_cuda):
forth_word
=
fluid
.
layers
.
data
(
name
=
'forthw'
,
shape
=
[
1
],
dtype
=
'int64'
)
next_word
=
fluid
.
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
dtype
=
'int64'
)
embed_first
=
fluid
.
layers
.
embedding
(
input
=
first_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_second
=
fluid
.
layers
.
embedding
(
input
=
second_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_third
=
fluid
.
layers
.
embedding
(
input
=
third_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
embed_forth
=
fluid
.
layers
.
embedding
(
input
=
forth_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
IS_SPARSE
,
param_attr
=
'shared_w'
)
concat_embed
=
fluid
.
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
axis
=
1
)
hidden1
=
fluid
.
layers
.
fc
(
input
=
concat_embed
,
size
=
HIDDEN_SIZE
,
act
=
'sigmoid'
)
predict_word
=
fluid
.
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
next_word
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
if
not
parallel
:
avg_cost
=
__network__
(
[
first_word
,
second_word
,
third_word
,
forth_word
,
next_word
])
else
:
places
=
fluid
.
layers
.
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
avg_cost
=
__network__
(
map
(
pd
.
read_input
,
[
first_word
,
second_word
,
third_word
,
forth_word
,
next_word
]))
pd
.
write_output
(
avg_cost
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
pd
())
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
sgd_optimizer
.
minimize
(
avg_cost
)
...
...
@@ -94,22 +115,42 @@ def main_impl(use_cuda):
raise
AssertionError
(
"Cost is too large {0:2.2}"
.
format
(
avg_cost_np
[
0
]))
def
main
(
*
args
,
**
kwargs
):
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
main_impl
(
*
args
,
**
kwargs
)
FULL_TEST
=
os
.
getenv
(
'FULL_TEST'
,
'1'
).
lower
()
in
[
'true'
,
'1'
,
't'
,
'y'
,
'yes'
,
'on'
]
SKIP_REASON
=
"Only run minimum number of tests in CI server, to make CI faster"
class
W2VTest
(
unittest
.
TestCase
):
def
test_cpu_normal
(
self
):
main
(
use_cuda
=
False
)
pass
def
inject_test_method
(
use_cuda
,
is_sparse
,
parallel
):
fn_name
=
"test_{0}_{1}_{2}"
.
format
(
"cuda"
if
use_cuda
else
"cpu"
,
"sparse"
if
is_sparse
else
"dense"
,
"parallel"
if
parallel
else
"normal"
)
def
__impl__
(
*
args
,
**
kwargs
):
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
main
(
use_cuda
=
use_cuda
,
is_sparse
=
is_sparse
,
parallel
=
parallel
)
if
use_cuda
and
is_sparse
and
parallel
:
fn
=
__impl__
else
:
# skip the other test when on CI server
fn
=
unittest
.
skipUnless
(
condition
=
FULL_TEST
,
reason
=
SKIP_REASON
)(
__impl__
)
setattr
(
W2VTest
,
fn_name
,
fn
)
def
test_gpu_normal
(
self
):
main
(
use_cuda
=
True
)
for
use_cuda
in
(
False
,
True
):
for
is_sparse
in
(
False
,
True
):
for
parallel
in
(
False
,
True
):
inject_test_method
(
use_cuda
,
is_sparse
,
parallel
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录