test_optimizer.py 49.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
Qiao Longfei 已提交
17 18
import unittest

19
import paddle.fluid as fluid
20 21
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
22
import paddle.fluid.core as core
M
mapingshuo 已提交
23
import paddle.compat as cpt
24
import numpy as np
25
from paddle.fluid.backward import append_backward
L
Leo Chen 已提交
26
from paddle.fluid.framework import Program, program_guard, convert_np_dtype_to_dtype_
C
chentianyu03 已提交
27
from paddle.fluid.framework import _test_eager_guard
L
Leo Chen 已提交
28
import paddle
29 30
from paddle.io import Dataset
import numpy
31
paddle.enable_static()
Q
Qiao Longfei 已提交
32 33 34 35


class TestOptimizer(unittest.TestCase):
    def test_sgd_optimizer(self):
Q
qiaolongfei 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr)
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out")
            block.append_op(
                type="mul",
                inputs={"X": mul_x,
                        "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1})
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
65 66
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
Q
Qiao Longfei 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])

Q
Qiao Longfei 已提交
72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class TestOptimizerBackwardApplygrad(unittest.TestCase):
    def test_sgd_optimizer(self):
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr)
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out")
            block.append_op(
                type="mul",
                inputs={"X": mul_x,
                        "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1})
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            with framework.program_guard(program, init_program):
                p_g = sgd_optimizer.backward(mean_out)
                opts = sgd_optimizer.apply_gradients(p_g)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
106 107
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
108 109 110 111 112 113

        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])


114 115 116 117 118 119 120 121
class TestMomentumOptimizer(unittest.TestCase):
    class MockMomentum(optimizer.MomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

122
    def test_vanilla_momentum_optimizer(self):
Q
Qiao Longfei 已提交
123
        init_program = framework.Program()
124 125 126
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
127 128 129 130 131
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
132 133 134 135 136 137 138 139 140 141
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
142 143 144
        learning_rate = 0.01
        momentum_optimizer = self.MockMomentum(
            learning_rate=learning_rate, momentum=0.2)
145 146 147 148
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
149
        params_grads = append_backward(mean_out)
150 151
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
152 153
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
154
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
155
        sgd_op = opts[-1]
156
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
157
        self.assertFalse(sgd_op.attr('use_nesterov'))
158 159 160 161 162 163 164 165 166

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
167 168 169 170
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
171 172 173
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
174

175
    def test_nesterov_momentum_optimizer(self):
Q
Qiao Longfei 已提交
176
        init_program = framework.Program()
177 178 179
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
180 181 182 183 184
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
185 186 187 188 189 190 191 192 193 194
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
195 196 197 198
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
199
        learning_rate = 0.01
200
        momentum_optimizer = self.MockMomentum(
Q
Qiao Longfei 已提交
201
            learning_rate=learning_rate, momentum=0.2, use_nesterov=True)
F
fengjiayi 已提交
202
        params_grads = append_backward(mean_out)
203 204
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
205 206
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
207
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
208
        sgd_op = opts[-1]
209
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
210
        self.assertTrue(sgd_op.attr('use_nesterov'))
211 212 213 214 215 216 217 218 219

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
220 221 222 223
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
224 225 226
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
227

228

229 230 231 232 233 234 235 236 237
class TestAdagradOptimizer(unittest.TestCase):
    class MockAdagrad(optimizer.AdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
Q
Qiao Longfei 已提交
238
        init_program = framework.Program()
239 240 241
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
242 243 244 245 246
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
247 248 249 250 251 252 253 254 255 256
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
257 258 259 260
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
261 262 263
        learning_rate = 0.01
        adagrad_optimizer = self.MockAdagrad(
            learning_rate=learning_rate, epsilon=1.0e-6)
F
fengjiayi 已提交
264
        params_grads = append_backward(mean_out)
265 266
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
267 268
        with framework.program_guard(program, init_program):
            opts = adagrad_optimizer.apply_gradients(params_grads)
269 270
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "adagrad"])
271

272
        # Check accumulators
273 274 275 276 277 278 279
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

Q
Qiao Longfei 已提交
280 281
        # Check init_program
        init_ops = init_program.global_block().ops
Z
zhongpu 已提交
282
        self.assertEqual(len(init_ops), 2)
Q
Qiao Longfei 已提交
283
        self.assertEqual(init_ops[1].type, "fill_constant")
284 285 286
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
287

288

289 290 291 292 293 294 295 296 297 298 299 300
class TestAdamOptimizer(unittest.TestCase):
    class MockAdam(optimizer.AdamOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
Q
Qiao Longfei 已提交
301
        init_program = framework.Program()
302 303 304
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
305 306 307 308 309
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
310 311 312 313 314 315 316 317 318 319
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
320 321 322 323
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
324
        learning_rate = 0.01
325
        adam_optimizer = self.MockAdam(
Q
Qiao Longfei 已提交
326
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
327
        params_grads = append_backward(mean_out)
328 329
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
330 331
        with framework.program_guard(program, init_program):
            opts = adam_optimizer.apply_gradients(params_grads)
A
Aurelius84 已提交
332 333
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "adam"])
334 335 336

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
Q
qiaolongfei 已提交
337
        self.assertEqual(len(accumulators), 4)
338 339 340 341 342 343 344 345 346
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)

Q
Qiao Longfei 已提交
347 348 349
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 5)
350 351
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
Qiao Longfei 已提交
352

353

354 355 356 357 358 359 360 361 362 363 364 365
class TestAdamaxOptimizer(unittest.TestCase):
    class MockAdamax(optimizer.AdamaxOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
Q
Qiao Longfei 已提交
366
        init_program = framework.Program()
367 368 369
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
370 371 372 373 374
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
375 376 377 378 379 380 381 382 383 384
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
385 386 387 388
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
389
        learning_rate = 0.01
390
        adamax_optimizer = self.MockAdamax(
Q
Qiao Longfei 已提交
391
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
392
        params_grads = append_backward(mean_out)
393 394
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
395 396
        with framework.program_guard(program, init_program):
            opts = adamax_optimizer.apply_gradients(params_grads)
397 398
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts], ["scale", "adamax", "scale"])
399 400 401

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
Q
qiaolongfei 已提交
402
        self.assertEqual(len(accumulators), 3)
403 404 405 406 407 408 409 410 411
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)

Q
Qiao Longfei 已提交
412 413 414
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 4)
415 416
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
Qiao Longfei 已提交
417

418

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
class TestDpsgdOptimizer(unittest.TestCase):
    def test_dpsgd_optimizer(self):
        def check_dpsgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr)
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
            block.append_op(
                type="mul",
                inputs={"X": mul_x,
                        "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1})
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out")
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
            dpsgd_optimizer = optimizer.DpsgdOptimizer(
                learning_rate=0.01, clip=100.0, batch_size=16.0, sigma=0.0)
            opts, _ = dpsgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_dpsgd_optimizer({
            'learning_rate': 1.1,
            'clip': 100.0,
            'batch_size': 16.0,
            'sigma': 4.0
        })
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "dpsgd"])


460 461 462 463 464 465 466 467 468 469 470 471 472
class TestDecayedAdagradOptimizer(unittest.TestCase):
    class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_decayed_adagrad_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
473 474 475 476 477
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
478 479 480 481 482 483 484 485 486 487
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
488 489 490 491
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
492 493 494
        learning_rate = 0.01
        decayed_adagrad_optimizer = self.MockDecayedAdagrad(
            learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6)
F
fengjiayi 已提交
495
        params_grads = append_backward(mean_out)
496 497
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
498 499
        with framework.program_guard(program, init_program):
            opts = decayed_adagrad_optimizer.apply_gradients(params_grads)
500 501
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "decayed_adagrad"])
502 503 504 505 506 507 508 509 510 511 512 513 514 515

        # Check accumulators
        accumulators = decayed_adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(
            decayed_adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
516 517 518
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
519 520


Q
qiaolongfei 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
class TestFtrlOptimizer(unittest.TestCase):
    class MockFtrl(optimizer.FtrlOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_squared_str(self):
            return self._squared_acc_str

        def get_linear_str(self):
            return self._linear_acc_str

    def test_ftrl_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
        learning_rate = 0.01
        ftrl_optimizer = self.MockFtrl(
            learning_rate=learning_rate, l1=0.0, l2=0.0, lr_power=-0.5)
        params_grads = append_backward(mean_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0)
562 563
        with framework.program_guard(program, init_program):
            opts = ftrl_optimizer.apply_gradients(params_grads)
564 565
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "ftrl"])
Q
qiaolongfei 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

        # Check accumulators
        accumulators = ftrl_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(ftrl_optimizer.get_squared_str() in accumulators)
        self.assertTrue(ftrl_optimizer.get_linear_str() in accumulators)
        squared_acc = accumulators[ftrl_optimizer.get_squared_str()]
        linear_acc = accumulators[ftrl_optimizer.get_linear_str()]
        self.assertEqual(len(squared_acc), 1)
        self.assertEqual(len(linear_acc), 1)
        self.assertTrue(mul_x.name in squared_acc)
        self.assertTrue(mul_x.name in linear_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 3)
582 583
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
qiaolongfei 已提交
584 585


M
mapingshuo 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
class TestLookaheadOptimizer(unittest.TestCase):
    def test_lookahead_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        init_block = init_program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
        init_mul_x = init_block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")

        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})

        sgd = optimizer.SGD(learning_rate=0.01)
        lookahead = optimizer.LookaheadOptimizer(sgd, alpha=0.5, k=5)
        with framework.program_guard(program, init_program):
            opts, _ = lookahead.minimize(mean_out)
620 621
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
M
mapingshuo 已提交
622 623


M
mapingshuo 已提交
624
class TestRecomputeOptimizer(unittest.TestCase):
625
    def net(self, return_input=False, with_dropout=False, with_seed=False):
M
mapingshuo 已提交
626 627 628 629 630 631 632 633
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
634 635

        if with_dropout is True:
M
mapingshuo 已提交
636 637 638 639 640 641 642
            mul_out_drop = block.create_var(
                dtype="float32",
                shape=[5, 8],
                lod_level=0,
                name="mul.out.dropout")
            mul_out_mask = block.create_var(
                dtype="uint8", shape=[5, 8], lod_level=0, name="mul.out.mask")
643 644 645 646
            if with_seed is True:
                seed_out = block.create_var(
                    dtype="int32", shape=[1], name="seed.out")

M
mapingshuo 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
        b1 = block.create_parameter(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1")
        b1_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1_out")
        b2 = block.create_parameter(
            dtype="float32", shape=[5, 8], lod_level=0, name="b2")
        b2_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="b2_out")
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
663 664 665 666 667 668 669 670 671 672 673 674 675 676

        if with_dropout is True:
            dropout_inputs = {'X': [mul_out]}
            if with_seed is True:
                block.append_op(
                    type='seed',
                    outputs={'Out': seed_out},
                    attrs={
                        'deterministic': True,
                        'rng_name': 'rng0',
                        'force_cpu': True
                    })
                dropout_inputs = {'X': [mul_out], 'Seed': [seed_out]}

M
mapingshuo 已提交
677 678
            block.append_op(
                type='dropout',
679
                inputs=dropout_inputs,
M
mapingshuo 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693
                outputs={'Out': [mul_out_drop],
                         'Mask': [mul_out_mask]},
                attrs={'dropout_prob': 0.5, })
            block.append_op(
                type="elementwise_add",
                inputs={"X": mul_out_drop,
                        "Y": b1},
                outputs={"Out": b1_out})
        else:
            block.append_op(
                type="elementwise_add",
                inputs={"X": mul_out,
                        "Y": b1},
                outputs={"Out": b1_out})
694

M
mapingshuo 已提交
695 696 697 698 699 700 701 702
        block.append_op(
            type="elementwise_add",
            inputs={"X": b1_out,
                    "Y": b2},
            outputs={"Out": b2_out})
        block.append_op(
            type="mean", inputs={"X": b2_out}, outputs={"Out": mean_out})

703 704
        if return_input == True:
            return mul_x, mul_out, b1_out, b2_out, mean_out
M
mapingshuo 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
        return mul_out, b1_out, b2_out, mean_out

    def test_no_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 12)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_one_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_str_checkpoints(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out.name])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
M
mapingshuo 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_multi_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_out, b2_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

    def test_adjacent_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_out, b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 12)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    def test_out_of_order_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b2_out, mul_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

    def test_input_as_checkpoints(self):
        mul_x, mul_out, b1_out, b2_out, mean_out = self.net(return_input=True)
        self.assertEqual(len(mean_out.block.ops), 4)
        self.assertEqual([op.type for op in mean_out.block.ops],
                         ["mul", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_x, b2_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 14)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "mul", "elementwise_add",
            "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd",
            "sgd", "sgd"
        ])

M
mapingshuo 已提交
829 830 831 832 833 834 835 836 837 838
    def test_apply_gradients(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        # apply backward
        params_grads = recompute_optimizer.backward(
            mean_out,
            startup_program=None,
            parameter_list=None,
839
            no_grad_set=None)
M
mapingshuo 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

        # apply gradient
        program = mean_out.block.program
        with framework.program_guard(program, None):
            optimize_ops = recompute_optimizer.apply_gradients(params_grads)

        self.assertEqual(len(mean_out.block.ops), 13)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "elementwise_add", "elementwise_add", "mean",
            "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd"
        ])

    def test_load(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        try:
859 860
            state_dict = {}
            recompute_optimizer.load(state_dict)
M
mapingshuo 已提交
861 862 863 864 865
        except NotImplementedError as e:
            self.assertEqual(
                "load function is not supported by Recompute Optimizer for now",
                cpt.get_exception_message(e))

M
mapingshuo 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
    def test_dropout(self):
        """
        If there are dropout layers in the forward nets, we should add a
        seed op
        """
        mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True)
        self.assertEqual(len(mean_out.block.ops), 5)
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            ["mul", "dropout", "elementwise_add", "elementwise_add", "mean"])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 17)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "dropout", "elementwise_add_grad", "dropout_grad", "mul_grad",
            "sgd", "sgd", "sgd"
        ])

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
    def test_dropout_with_determinate_seed(self):
        mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True,
                                                     with_seed=True)
        self.assertEqual(len(mean_out.block.ops), 6)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean"
        ])
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 17)
        self.assertEqual([op.type for op in mean_out.block.ops], [
            "mul", "seed", "dropout", "elementwise_add", "elementwise_add",
            "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul",
            "dropout", "elementwise_add_grad", "dropout_grad", "mul_grad",
            "sgd", "sgd", "sgd"
        ])

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    def test_dropout_with_seed(self):
        """
        when we recompute a dropout op, make sure that the recomputed one
	    is the same as the original var.
	    """

        def gen_data():
            return {
                "x": np.random.random(size=(100, 3)).astype('float32'),
                "y": np.random.randint(
                    2, size=(100, 1)).astype('int64')
            }

        def mlp(input_x, input_y):
            drop_res = fluid.layers.dropout(
                input_x, dropout_prob=0.5, name="dropout_with_seed_cpu")
            prediction = fluid.layers.fc(input=[drop_res],
                                         size=2,
                                         act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return drop_res, prediction, sum_cost

        main_program = Program()
        startup_program = Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with program_guard(main_program, startup_program):
                input_x = fluid.layers.data(
                    name="x", shape=[3], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                drop_res, prediction, cost = mlp(input_x, input_y)
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([prediction])
                sgd.minimize(cost)

                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                feed_data = gen_data()
                drop_vec = exe.run(feed=feed_data,
                                   program=fluid.default_main_program(),
                                   fetch_list=[
                                       "dropout_with_seed_cpu.tmp_1",
                                       "dropout_with_seed_cpu.tmp_1.subprog_0"
                                   ])
                self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist())


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestRecomputeOptimizerCUDA(unittest.TestCase):
    def test_dropout_with_seed(self):
        """
        when we recompute a dropout op, make sure that the recomputed one
        is the same as the original var.
        """

        def gen_data():
            return {
                "x": np.random.random(size=(100, 3)).astype('float32'),
                "y": np.random.randint(
                    2, size=(100, 1)).astype('int64')
            }

        def mlp(input_x, input_y):
            drop_res = fluid.layers.dropout(
                input_x, dropout_prob=0.5, name="dropout_with_seed_gpu")
            prediction = fluid.layers.fc(input=[drop_res],
                                         size=2,
                                         act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return drop_res, prediction, sum_cost

        main_program = Program()
        startup_program = Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with program_guard(main_program, startup_program):
                input_x = fluid.layers.data(
                    name="x", shape=[3], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                drop_res, prediction, cost = mlp(input_x, input_y)
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([prediction])
                sgd.minimize(cost)

                place = fluid.CUDAPlace(0)
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                feed_data = gen_data()
                drop_vec = exe.run(feed=feed_data,
                                   program=fluid.default_main_program(),
                                   fetch_list=[
                                       "dropout_with_seed_gpu.tmp_1",
                                       "dropout_with_seed_gpu.tmp_1.subprog_0"
                                   ])
                self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist())

M
mapingshuo 已提交
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
class TestGradientMergeOptimizer(unittest.TestCase):
    def net(self):
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        b1 = block.create_parameter(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1")
        b1_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1_out")
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        block.append_op(
            type="elementwise_add",
            inputs={"X": mul_out,
                    "Y": b1},
            outputs={"Out": b1_out})
        block.append_op(
            type="mean", inputs={"X": b1_out}, outputs={"Out": mean_out})
        return mean_out

    def test_program_desc(self, ):
        cost = self.net()
        main_program = cost.block.program
        init_program = framework.Program()
        self.assertEqual(main_program.num_blocks, 1)
        self.assertEqual(len(cost.block.ops), 3)
        self.assertEqual([op.type for op in cost.block.ops],
                         ["mul", "elementwise_add", "mean"])

        opt = optimizer.SGD(learning_rate=1.0)
        opt = optimizer.GradientMergeOptimizer(opt, k_steps=4)
        with framework.program_guard(main_program, init_program):
            ops, params_grads = opt.minimize(cost)

1058
        self.assertEqual(main_program.num_blocks, 2)
1059 1060

        # main block
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
        self.assertEqual(len(cost.block.ops), 13)
        self.assertEqual(
            [op.type for op in cost.block.ops],
            [
                'mul',
                'elementwise_add',
                'mean',
                'fill_constant',
                'mean_grad',
                'elementwise_add_grad',
                'mul_grad',
                'increment',  # step += 1
                'elementwise_mod',  # step %= k_steps
                'equal',  # cond_var == (step == 0)
                'elementwise_add',
                'elementwise_add',
                'conditional_block',
            ])
1079

1080 1081
        # optimize block
        self.assertEqual(len(main_program.block(1).ops), 6)
1082
        self.assertEqual([op.type for op in main_program.block(1).ops], [
1083
            'scale', 'scale', 'sgd', 'sgd', 'fill_constant', 'fill_constant'
1084 1085 1086
        ])


L
Leo Chen 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
class TestOptimizerDtype(unittest.TestCase):
    '''
    The dtype of optimizer should be inferred by parameters, and the learning rate
    is cteated with the same dtype.
    '''

    def check_with_dtype(self, dtype):
        class MyLayer(paddle.nn.Layer):
            def __init__(self, dtype):
                super(MyLayer, self).__init__()
                self._w = self.create_parameter([2, 3], dtype=dtype)
                self._b = self.create_parameter([2, 3], dtype=dtype)

            def forward(self, x):
                return x * self._w + self._b

        with paddle.fluid.dygraph.guard():
            model = MyLayer(dtype)
            x = paddle.rand([10, 2, 3], dtype=dtype)
            loss = model(x)
            adam = paddle.optimizer.Adam(parameters=model.parameters())
            loss.backward()
            adam.step()
            self.assertEqual(adam._dtype, convert_np_dtype_to_dtype_(dtype))

    def test_float64(self):
        self.check_with_dtype('float64')

    def test_float32(self):
        self.check_with_dtype('float32')

C
chentianyu03 已提交
1118 1119 1120 1121 1122
    def test_api_eager_dygraph(self):
        with _test_eager_guard():
            self.test_float64()
            self.test_float32()

L
Leo Chen 已提交
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
class TestMasterWeightSaveForFP16(unittest.TestCase):
    '''
    For Amp-O2, some optimizer(Momentum, Adam ...) will create master weights for parameters to to improve the accuracy.
    Master weights will be saved by optimizer::state_dict.
    '''

    def check_with_opt_state_dict(self, use_save_load=True):
        paddle.seed(100)
        numpy.random.seed(100)

        class SimpleNet(paddle.nn.Layer):
            def __init__(self, input_size, output_size):
                super(SimpleNet, self).__init__()
                self.linears = paddle.nn.LayerList([
                    paddle.nn.Linear(input_size, output_size) for i in range(1)
                ])

            def forward(self, x):
                for i, l in enumerate(self.linears):
                    x = self.linears[i](x)
                return x

        input_size = 2  # 设为较大的值
        output_size = 2  # 设为较大的值
        batch_size = 2  # batch_size 为8的倍数
        nums_batch = 10

        class RandomDataset(Dataset):
            def __init__(self, num_samples):
                self.num_samples = num_samples

            def __getitem__(self, idx):
                data = numpy.random.random([input_size]).astype('float16')
                label = numpy.random.random([output_size]).astype('float16')
                return data, label

            def __len__(self):
                return self.num_samples

        dataset = RandomDataset(nums_batch * batch_size)
        loader = paddle.io.DataLoader(
            dataset,
            batch_size=batch_size,
            shuffle=False,
            drop_last=True,
            num_workers=0)

        mse = paddle.nn.MSELoss()
        model = SimpleNet(input_size, output_size)  # 定义模型
        optimizer = paddle.optimizer.Momentum(
            learning_rate=0.0001,
            parameters=model.parameters(),
            multi_precision=True)  # 定义优化器
        scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
        model = paddle.amp.decorate(models=model, level='O2')

        for i, (data, label) in enumerate(loader):
            with paddle.amp.auto_cast(level='O2'):
                output = model(data)
                loss = mse(output, label)
            scaled = scaler.scale(loss)
            scaled.backward()
            scaler.step(optimizer)
            scaler.update()
            optimizer.clear_grad(set_to_zero=False)

            if use_save_load and i == 5:
                paddle.save(model.state_dict(), "model.pdparams")
                paddle.save(optimizer.state_dict(), "opt.pdopt")
                model.set_state_dict(paddle.load("model.pdparams"))
                optimizer.set_state_dict(paddle.load("opt.pdopt"))

        return loss.numpy()

    def test_with_state_dict(self):
        if core.is_compiled_with_cuda():
            with fluid.dygraph.guard():
                out_use_state_dict = self.check_with_opt_state_dict(
                    use_save_load=True)
                out_no_state_dict = self.check_with_opt_state_dict(
                    use_save_load=False)
            self.assertTrue(
                np.array_equal(out_use_state_dict, out_no_state_dict))


Q
Qiao Longfei 已提交
1209 1210
if __name__ == '__main__':
    unittest.main()