# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle.fluid as fluid import paddle.fluid.framework as framework import paddle.fluid.optimizer as optimizer import paddle.fluid.core as core import paddle.compat as cpt import numpy as np from paddle.fluid.backward import append_backward from paddle.fluid.framework import Program, program_guard, convert_np_dtype_to_dtype_ from paddle.fluid.framework import _test_eager_guard import paddle from paddle.io import Dataset import numpy paddle.enable_static() class TestOptimizer(unittest.TestCase): def test_sgd_optimizer(self): def check_sgd_optimizer(optimizer_attr): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr=optimizer_attr) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01) opts, _ = sgd_optimizer.minimize(mean_out, init_program) return opts opts = check_sgd_optimizer({'learning_rate': 1.1}) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "sgd"]) opts = check_sgd_optimizer({'learning_rate': 1.0}) self.assertEqual(len(opts), 1) self.assertEqual([op.type for op in opts], ["sgd"]) class TestOptimizerBackwardApplygrad(unittest.TestCase): def test_sgd_optimizer(self): def check_sgd_optimizer(optimizer_attr): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr=optimizer_attr) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01) with framework.program_guard(program, init_program): p_g = sgd_optimizer.backward(mean_out) opts = sgd_optimizer.apply_gradients(p_g) return opts opts = check_sgd_optimizer({'learning_rate': 1.1}) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "sgd"]) opts = check_sgd_optimizer({'learning_rate': 1.0}) self.assertEqual(len(opts), 1) self.assertEqual([op.type for op in opts], ["sgd"]) class TestMomentumOptimizer(unittest.TestCase): class MockMomentum(optimizer.MomentumOptimizer): def get_accumulators(self): return self._accumulators def get_velocity_str(self): return self._velocity_acc_str def test_vanilla_momentum_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) learning_rate = 0.01 momentum_optimizer = self.MockMomentum( learning_rate=learning_rate, momentum=0.2) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = momentum_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) sgd_op = opts[-1] self.assertEqual([op.type for op in opts], ["scale", "momentum"]) self.assertFalse(sgd_op.attr('use_nesterov')) # Check accumulators accumulators = momentum_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators) velocity_acc = accumulators[momentum_optimizer.get_velocity_str()] self.assertEqual(len(velocity_acc), 1) self.assertTrue(mul_x.name in velocity_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), 0.0) def test_nesterov_momentum_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 momentum_optimizer = self.MockMomentum( learning_rate=learning_rate, momentum=0.2, use_nesterov=True) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = momentum_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) sgd_op = opts[-1] self.assertEqual([op.type for op in opts], ["scale", "momentum"]) self.assertTrue(sgd_op.attr('use_nesterov')) # Check accumulators accumulators = momentum_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators) velocity_acc = accumulators[momentum_optimizer.get_velocity_str()] self.assertEqual(len(velocity_acc), 1) self.assertTrue(mul_x.name in velocity_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), 0.0) class TestAdagradOptimizer(unittest.TestCase): class MockAdagrad(optimizer.AdagradOptimizer): def get_accumulators(self): return self._accumulators def get_moment_str(self): return self._moment_acc_str def test_adagrad_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adagrad_optimizer = self.MockAdagrad( learning_rate=learning_rate, epsilon=1.0e-6) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = adagrad_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "adagrad"]) # Check accumulators accumulators = adagrad_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators) moment_acc = accumulators[adagrad_optimizer.get_moment_str()] self.assertEqual(len(moment_acc), 1) self.assertTrue(mul_x.name in moment_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), 0.0) class TestAdamOptimizer(unittest.TestCase): class MockAdam(optimizer.AdamOptimizer): def get_accumulators(self): return self._accumulators def get_moment1_str(self): return self._moment1_acc_str def get_moment2_str(self): return self._moment2_acc_str def test_adam_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adam_optimizer = self.MockAdam( learning_rate=learning_rate, beta1=0.9, beta2=0.999) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adam_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = adam_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "adam"]) # Check accumulators accumulators = adam_optimizer.get_accumulators() self.assertEqual(len(accumulators), 4) self.assertTrue(adam_optimizer.get_moment1_str() in accumulators) self.assertTrue(adam_optimizer.get_moment2_str() in accumulators) moment1_acc = accumulators[adam_optimizer.get_moment1_str()] moment2_acc = accumulators[adam_optimizer.get_moment2_str()] self.assertEqual(len(moment1_acc), 1) self.assertEqual(len(moment2_acc), 1) self.assertTrue(mul_x.name in moment1_acc) self.assertTrue(mul_x.name in moment2_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 5) self.assertEqual(init_ops[-1].type, "fill_constant") self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate) class TestAdamaxOptimizer(unittest.TestCase): class MockAdamax(optimizer.AdamaxOptimizer): def get_accumulators(self): return self._accumulators def get_moment_str(self): return self._moment_acc_str def get_inf_norm_str(self): return self._inf_norm_acc_str def test_adamax_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adamax_optimizer = self.MockAdamax( learning_rate=learning_rate, beta1=0.9, beta2=0.999) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adamax_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = adamax_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 3) self.assertEqual([op.type for op in opts], ["scale", "adamax", "scale"]) # Check accumulators accumulators = adamax_optimizer.get_accumulators() self.assertEqual(len(accumulators), 3) self.assertTrue(adamax_optimizer.get_moment_str() in accumulators) self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators) moment_acc = accumulators[adamax_optimizer.get_moment_str()] inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()] self.assertEqual(len(moment_acc), 1) self.assertEqual(len(inf_norm_acc), 1) self.assertTrue(mul_x.name in moment_acc) self.assertTrue(mul_x.name in inf_norm_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 4) self.assertEqual(init_ops[-1].type, "fill_constant") self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate) class TestDpsgdOptimizer(unittest.TestCase): def test_dpsgd_optimizer(self): def check_dpsgd_optimizer(optimizer_attr): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr=optimizer_attr) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) dpsgd_optimizer = optimizer.DpsgdOptimizer( learning_rate=0.01, clip=100.0, batch_size=16.0, sigma=0.0) opts, _ = dpsgd_optimizer.minimize(mean_out, init_program) return opts opts = check_dpsgd_optimizer({ 'learning_rate': 1.1, 'clip': 100.0, 'batch_size': 16.0, 'sigma': 4.0 }) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "dpsgd"]) class TestDecayedAdagradOptimizer(unittest.TestCase): class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer): def get_accumulators(self): return self._accumulators def get_moment_str(self): return self._moment_acc_str def test_decayed_adagrad_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 decayed_adagrad_optimizer = self.MockDecayedAdagrad( learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = decayed_adagrad_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "decayed_adagrad"]) # Check accumulators accumulators = decayed_adagrad_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue( decayed_adagrad_optimizer.get_moment_str() in accumulators) moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()] self.assertEqual(len(moment_acc), 1) self.assertTrue(mul_x.name in moment_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), 0.0) class TestFtrlOptimizer(unittest.TestCase): class MockFtrl(optimizer.FtrlOptimizer): def get_accumulators(self): return self._accumulators def get_squared_str(self): return self._squared_acc_str def get_linear_str(self): return self._linear_acc_str def test_ftrl_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 ftrl_optimizer = self.MockFtrl( learning_rate=learning_rate, l1=0.0, l2=0.0, lr_power=-0.5) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = ftrl_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "ftrl"]) # Check accumulators accumulators = ftrl_optimizer.get_accumulators() self.assertEqual(len(accumulators), 2) self.assertTrue(ftrl_optimizer.get_squared_str() in accumulators) self.assertTrue(ftrl_optimizer.get_linear_str() in accumulators) squared_acc = accumulators[ftrl_optimizer.get_squared_str()] linear_acc = accumulators[ftrl_optimizer.get_linear_str()] self.assertEqual(len(squared_acc), 1) self.assertEqual(len(linear_acc), 1) self.assertTrue(mul_x.name in squared_acc) self.assertTrue(mul_x.name in linear_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 3) self.assertEqual(init_ops[-1].type, "fill_constant") self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate) class TestLookaheadOptimizer(unittest.TestCase): def test_lookahead_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() init_block = init_program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) init_mul_x = init_block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) sgd = optimizer.SGD(learning_rate=0.01) lookahead = optimizer.LookaheadOptimizer(sgd, alpha=0.5, k=5) with framework.program_guard(program, init_program): opts, _ = lookahead.minimize(mean_out) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "sgd"]) class TestRecomputeOptimizer(unittest.TestCase): def net(self, return_input=False, with_dropout=False, with_seed=False): program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") if with_dropout is True: mul_out_drop = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out.dropout") mul_out_mask = block.create_var( dtype="uint8", shape=[5, 8], lod_level=0, name="mul.out.mask") if with_seed is True: seed_out = block.create_var( dtype="int32", shape=[1], name="seed.out") b1 = block.create_parameter( dtype="float32", shape=[5, 8], lod_level=0, name="b1") b1_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="b1_out") b2 = block.create_parameter( dtype="float32", shape=[5, 8], lod_level=0, name="b2") b2_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="b2_out") mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) if with_dropout is True: dropout_inputs = {'X': [mul_out]} if with_seed is True: block.append_op( type='seed', outputs={'Out': seed_out}, attrs={ 'deterministic': True, 'rng_name': 'rng0', 'force_cpu': True }) dropout_inputs = {'X': [mul_out], 'Seed': [seed_out]} block.append_op( type='dropout', inputs=dropout_inputs, outputs={'Out': [mul_out_drop], 'Mask': [mul_out_mask]}, attrs={'dropout_prob': 0.5, }) block.append_op( type="elementwise_add", inputs={"X": mul_out_drop, "Y": b1}, outputs={"Out": b1_out}) else: block.append_op( type="elementwise_add", inputs={"X": mul_out, "Y": b1}, outputs={"Out": b1_out}) block.append_op( type="elementwise_add", inputs={"X": b1_out, "Y": b2}, outputs={"Out": b2_out}) block.append_op( type="mean", inputs={"X": b2_out}, outputs={"Out": mean_out}) if return_input == True: return mul_x, mul_out, b1_out, b2_out, mean_out return mul_out, b1_out, b2_out, mean_out def test_no_checkpoint(self): mul_out, b1_out, b2_out, mean_out = self.net() self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 12) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_one_checkpoint(self): mul_out, b1_out, b2_out, mean_out = self.net() self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b1_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 13) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_str_checkpoints(self): mul_out, b1_out, b2_out, mean_out = self.net() self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b1_out.name]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 13) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_multi_checkpoint(self): mul_out, b1_out, b2_out, mean_out = self.net() self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([mul_out, b2_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 13) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add", "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_adjacent_checkpoint(self): mul_out, b1_out, b2_out, mean_out = self.net() self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([mul_out, b1_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 12) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_out_of_order_checkpoint(self): mul_out, b1_out, b2_out, mean_out = self.net() self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b2_out, mul_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 13) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add", "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_input_as_checkpoints(self): mul_x, mul_out, b1_out, b2_out, mean_out = self.net(return_input=True) self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([mul_x, b2_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 14) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "mul", "elementwise_add", "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_apply_gradients(self): mul_out, b1_out, b2_out, mean_out = self.net() sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b1_out]) # apply backward params_grads = recompute_optimizer.backward( mean_out, startup_program=None, parameter_list=None, no_grad_set=None) # apply gradient program = mean_out.block.program with framework.program_guard(program, None): optimize_ops = recompute_optimizer.apply_gradients(params_grads) self.assertEqual(len(mean_out.block.ops), 13) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_load(self): mul_out, b1_out, b2_out, mean_out = self.net() sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b1_out]) try: state_dict = {} recompute_optimizer.load(state_dict) except NotImplementedError as e: self.assertEqual( "load function is not supported by Recompute Optimizer for now", cpt.get_exception_message(e)) def test_dropout(self): """ If there are dropout layers in the forward nets, we should add a seed op """ mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True) self.assertEqual(len(mean_out.block.ops), 5) self.assertEqual( [op.type for op in mean_out.block.ops], ["mul", "dropout", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b1_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 17) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "seed", "dropout", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul", "dropout", "elementwise_add_grad", "dropout_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_dropout_with_determinate_seed(self): mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True, with_seed=True) self.assertEqual(len(mean_out.block.ops), 6) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "seed", "dropout", "elementwise_add", "elementwise_add", "mean" ]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b1_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 17) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "seed", "dropout", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul", "dropout", "elementwise_add_grad", "dropout_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_dropout_with_seed(self): """ when we recompute a dropout op, make sure that the recomputed one is the same as the original var. """ def gen_data(): return { "x": np.random.random(size=(100, 3)).astype('float32'), "y": np.random.randint( 2, size=(100, 1)).astype('int64') } def mlp(input_x, input_y): drop_res = fluid.layers.dropout( input_x, dropout_prob=0.5, name="dropout_with_seed_cpu") prediction = fluid.layers.fc(input=[drop_res], size=2, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return drop_res, prediction, sum_cost main_program = Program() startup_program = Program() scope = fluid.Scope() with fluid.scope_guard(scope): with program_guard(main_program, startup_program): input_x = fluid.layers.data( name="x", shape=[3], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') drop_res, prediction, cost = mlp(input_x, input_y) sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.RecomputeOptimizer(sgd) sgd._set_checkpoints([prediction]) sgd.minimize(cost) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) feed_data = gen_data() drop_vec = exe.run(feed=feed_data, program=fluid.default_main_program(), fetch_list=[ "dropout_with_seed_cpu.tmp_1", "dropout_with_seed_cpu.tmp_1.subprog_0" ]) self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist()) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestRecomputeOptimizerCUDA(unittest.TestCase): def test_dropout_with_seed(self): """ when we recompute a dropout op, make sure that the recomputed one is the same as the original var. """ def gen_data(): return { "x": np.random.random(size=(100, 3)).astype('float32'), "y": np.random.randint( 2, size=(100, 1)).astype('int64') } def mlp(input_x, input_y): drop_res = fluid.layers.dropout( input_x, dropout_prob=0.5, name="dropout_with_seed_gpu") prediction = fluid.layers.fc(input=[drop_res], size=2, act='softmax') cost = fluid.layers.cross_entropy(input=prediction, label=input_y) sum_cost = fluid.layers.reduce_mean(cost) return drop_res, prediction, sum_cost main_program = Program() startup_program = Program() scope = fluid.Scope() with fluid.scope_guard(scope): with program_guard(main_program, startup_program): input_x = fluid.layers.data( name="x", shape=[3], dtype='float32') input_y = fluid.layers.data(name="y", shape=[1], dtype='int64') drop_res, prediction, cost = mlp(input_x, input_y) sgd = fluid.optimizer.Adam(learning_rate=0.01) sgd = fluid.optimizer.RecomputeOptimizer(sgd) sgd._set_checkpoints([prediction]) sgd.minimize(cost) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) feed_data = gen_data() drop_vec = exe.run(feed=feed_data, program=fluid.default_main_program(), fetch_list=[ "dropout_with_seed_gpu.tmp_1", "dropout_with_seed_gpu.tmp_1.subprog_0" ]) self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist()) class TestGradientMergeOptimizer(unittest.TestCase): def net(self): program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") b1 = block.create_parameter( dtype="float32", shape=[5, 8], lod_level=0, name="b1") b1_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="b1_out") mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) block.append_op( type="elementwise_add", inputs={"X": mul_out, "Y": b1}, outputs={"Out": b1_out}) block.append_op( type="mean", inputs={"X": b1_out}, outputs={"Out": mean_out}) return mean_out def test_program_desc(self, ): cost = self.net() main_program = cost.block.program init_program = framework.Program() self.assertEqual(main_program.num_blocks, 1) self.assertEqual(len(cost.block.ops), 3) self.assertEqual([op.type for op in cost.block.ops], ["mul", "elementwise_add", "mean"]) opt = optimizer.SGD(learning_rate=1.0) opt = optimizer.GradientMergeOptimizer(opt, k_steps=4) with framework.program_guard(main_program, init_program): ops, params_grads = opt.minimize(cost) self.assertEqual(main_program.num_blocks, 2) # main block self.assertEqual(len(cost.block.ops), 13) self.assertEqual( [op.type for op in cost.block.ops], [ 'mul', 'elementwise_add', 'mean', 'fill_constant', 'mean_grad', 'elementwise_add_grad', 'mul_grad', 'increment', # step += 1 'elementwise_mod', # step %= k_steps 'equal', # cond_var == (step == 0) 'elementwise_add', 'elementwise_add', 'conditional_block', ]) # optimize block self.assertEqual(len(main_program.block(1).ops), 6) self.assertEqual([op.type for op in main_program.block(1).ops], [ 'scale', 'scale', 'sgd', 'sgd', 'fill_constant', 'fill_constant' ]) class TestOptimizerDtype(unittest.TestCase): ''' The dtype of optimizer should be inferred by parameters, and the learning rate is cteated with the same dtype. ''' def check_with_dtype(self, dtype): class MyLayer(paddle.nn.Layer): def __init__(self, dtype): super(MyLayer, self).__init__() self._w = self.create_parameter([2, 3], dtype=dtype) self._b = self.create_parameter([2, 3], dtype=dtype) def forward(self, x): return x * self._w + self._b with paddle.fluid.dygraph.guard(): model = MyLayer(dtype) x = paddle.rand([10, 2, 3], dtype=dtype) loss = model(x) adam = paddle.optimizer.Adam(parameters=model.parameters()) loss.backward() adam.step() self.assertEqual(adam._dtype, convert_np_dtype_to_dtype_(dtype)) def test_float64(self): self.check_with_dtype('float64') def test_float32(self): self.check_with_dtype('float32') def test_api_eager_dygraph(self): with _test_eager_guard(): self.test_float64() self.test_float32() class TestMasterWeightSaveForFP16(unittest.TestCase): ''' For Amp-O2, some optimizer(Momentum, Adam ...) will create master weights for parameters to to improve the accuracy. Master weights will be saved by optimizer::state_dict. ''' def check_with_opt_state_dict(self, use_save_load=True): paddle.seed(100) numpy.random.seed(100) class SimpleNet(paddle.nn.Layer): def __init__(self, input_size, output_size): super(SimpleNet, self).__init__() self.linears = paddle.nn.LayerList([ paddle.nn.Linear(input_size, output_size) for i in range(1) ]) def forward(self, x): for i, l in enumerate(self.linears): x = self.linears[i](x) return x input_size = 2 # 设为较大的值 output_size = 2 # 设为较大的值 batch_size = 2 # batch_size 为8的倍数 nums_batch = 10 class RandomDataset(Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): data = numpy.random.random([input_size]).astype('float16') label = numpy.random.random([output_size]).astype('float16') return data, label def __len__(self): return self.num_samples dataset = RandomDataset(nums_batch * batch_size) loader = paddle.io.DataLoader( dataset, batch_size=batch_size, shuffle=False, drop_last=True, num_workers=0) mse = paddle.nn.MSELoss() model = SimpleNet(input_size, output_size) # 定义模型 optimizer = paddle.optimizer.Momentum( learning_rate=0.0001, parameters=model.parameters(), multi_precision=True) # 定义优化器 scaler = paddle.amp.GradScaler(init_loss_scaling=1024) model = paddle.amp.decorate(models=model, level='O2') for i, (data, label) in enumerate(loader): with paddle.amp.auto_cast(level='O2'): output = model(data) loss = mse(output, label) scaled = scaler.scale(loss) scaled.backward() scaler.step(optimizer) scaler.update() optimizer.clear_grad(set_to_zero=False) if use_save_load and i == 5: paddle.save(model.state_dict(), "model.pdparams") paddle.save(optimizer.state_dict(), "opt.pdopt") model.set_state_dict(paddle.load("model.pdparams")) optimizer.set_state_dict(paddle.load("opt.pdopt")) return loss.numpy() def test_with_state_dict(self): if core.is_compiled_with_cuda(): with fluid.dygraph.guard(): out_use_state_dict = self.check_with_opt_state_dict( use_save_load=True) out_no_state_dict = self.check_with_opt_state_dict( use_save_load=False) self.assertTrue( np.array_equal(out_use_state_dict, out_no_state_dict)) if __name__ == '__main__': unittest.main()