test_optimizer.py 23.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
Qiao Longfei 已提交
17 18
import unittest

19 20 21
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
from paddle.fluid.backward import append_backward
Q
Qiao Longfei 已提交
22 23 24 25


class TestOptimizer(unittest.TestCase):
    def test_sgd_optimizer(self):
Q
qiaolongfei 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr)
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out")
            block.append_op(
                type="mul",
                inputs={"X": mul_x,
                        "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1})
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
55 56
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
Q
Qiao Longfei 已提交
57

Q
qiaolongfei 已提交
58 59 60 61
        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])

Q
Qiao Longfei 已提交
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
class TestOptimizerBackwardApplygrad(unittest.TestCase):
    def test_sgd_optimizer(self):
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr)
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out")
            block.append_op(
                type="mul",
                inputs={"X": mul_x,
                        "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1})
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            with framework.program_guard(program, init_program):
                p_g = sgd_optimizer.backward(mean_out)
                opts = sgd_optimizer.apply_gradients(p_g)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
96 97
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
98 99 100 101 102 103

        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])


104 105 106 107 108 109 110 111
class TestMomentumOptimizer(unittest.TestCase):
    class MockMomentum(optimizer.MomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

112
    def test_vanilla_momentum_optimizer(self):
Q
Qiao Longfei 已提交
113
        init_program = framework.Program()
114 115 116
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
117 118 119 120 121
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
122 123 124 125 126 127 128 129 130 131
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
132 133 134
        learning_rate = 0.01
        momentum_optimizer = self.MockMomentum(
            learning_rate=learning_rate, momentum=0.2)
135 136 137 138
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
139
        params_grads = append_backward(mean_out)
140 141
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
142 143
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
144
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
145
        sgd_op = opts[-1]
146
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
147
        self.assertFalse(sgd_op.attr('use_nesterov'))
148 149 150 151 152 153 154 155 156

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
157 158 159 160 161 162 163 164
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

165
    def test_nesterov_momentum_optimizer(self):
Q
Qiao Longfei 已提交
166
        init_program = framework.Program()
167 168 169
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
170 171 172 173 174
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
175 176 177 178 179 180 181 182 183 184
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
185 186 187 188
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
189
        learning_rate = 0.01
190
        momentum_optimizer = self.MockMomentum(
Q
Qiao Longfei 已提交
191
            learning_rate=learning_rate, momentum=0.2, use_nesterov=True)
F
fengjiayi 已提交
192
        params_grads = append_backward(mean_out)
193 194
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
195 196
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
197
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
198
        sgd_op = opts[-1]
199
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
200
        self.assertTrue(sgd_op.attr('use_nesterov'))
201 202 203 204 205 206 207 208 209

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
210 211 212 213 214 215 216 217
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

218

219 220 221 222 223 224 225 226 227
class TestAdagradOptimizer(unittest.TestCase):
    class MockAdagrad(optimizer.AdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
Q
Qiao Longfei 已提交
228
        init_program = framework.Program()
229 230 231
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
232 233 234 235 236
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
237 238 239 240 241 242 243 244 245 246
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
247 248 249 250
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
251 252 253
        learning_rate = 0.01
        adagrad_optimizer = self.MockAdagrad(
            learning_rate=learning_rate, epsilon=1.0e-6)
F
fengjiayi 已提交
254
        params_grads = append_backward(mean_out)
255 256
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
257 258
        with framework.program_guard(program, init_program):
            opts = adagrad_optimizer.apply_gradients(params_grads)
259 260
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "adagrad"])
261

262
        # Check accumulators
263 264 265 266 267 268 269
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

Q
Qiao Longfei 已提交
270 271
        # Check init_program
        init_ops = init_program.global_block().ops
272
        self.assertEqual(len(init_ops), 3)
Q
Qiao Longfei 已提交
273 274 275 276 277
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

278

279 280 281 282 283 284 285 286 287 288 289 290
class TestAdamOptimizer(unittest.TestCase):
    class MockAdam(optimizer.AdamOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
Q
Qiao Longfei 已提交
291
        init_program = framework.Program()
292 293 294
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
295 296 297 298 299
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
300 301 302 303 304 305 306 307 308 309
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
310 311 312 313
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
314
        learning_rate = 0.01
315
        adam_optimizer = self.MockAdam(
Q
Qiao Longfei 已提交
316
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
317
        params_grads = append_backward(mean_out)
318 319
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
320 321
        with framework.program_guard(program, init_program):
            opts = adam_optimizer.apply_gradients(params_grads)
322 323 324
        self.assertEqual(len(opts), 4)
        self.assertEqual([op.type for op in opts],
                         ["scale", "adam", "scale", "scale"])
325 326 327

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
Q
qiaolongfei 已提交
328
        self.assertEqual(len(accumulators), 4)
329 330 331 332 333 334 335 336 337
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)

Q
Qiao Longfei 已提交
338 339 340 341 342 343
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 5)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

344

345 346 347 348 349 350 351 352 353 354 355 356
class TestAdamaxOptimizer(unittest.TestCase):
    class MockAdamax(optimizer.AdamaxOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
Q
Qiao Longfei 已提交
357
        init_program = framework.Program()
358 359 360
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
361 362 363 364 365
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
366 367 368 369 370 371 372 373 374 375
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
376 377 378 379
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
380
        learning_rate = 0.01
381
        adamax_optimizer = self.MockAdamax(
Q
Qiao Longfei 已提交
382
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
383
        params_grads = append_backward(mean_out)
384 385
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
386 387
        with framework.program_guard(program, init_program):
            opts = adamax_optimizer.apply_gradients(params_grads)
388 389
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts], ["scale", "adamax", "scale"])
390 391 392

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
Q
qiaolongfei 已提交
393
        self.assertEqual(len(accumulators), 3)
394 395 396 397 398 399 400 401 402
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)

Q
Qiao Longfei 已提交
403 404 405 406 407 408
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 4)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

409

410 411 412 413 414 415 416 417 418 419 420 421 422
class TestDecayedAdagradOptimizer(unittest.TestCase):
    class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_decayed_adagrad_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
423 424 425 426 427
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
428 429 430 431 432 433 434 435 436 437
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
438 439 440 441
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
442 443 444
        learning_rate = 0.01
        decayed_adagrad_optimizer = self.MockDecayedAdagrad(
            learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6)
F
fengjiayi 已提交
445
        params_grads = append_backward(mean_out)
446 447
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
448 449
        with framework.program_guard(program, init_program):
            opts = decayed_adagrad_optimizer.apply_gradients(params_grads)
450 451
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "decayed_adagrad"])
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

        # Check accumulators
        accumulators = decayed_adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(
            decayed_adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)


Q
qiaolongfei 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
class TestFtrlOptimizer(unittest.TestCase):
    class MockFtrl(optimizer.FtrlOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_squared_str(self):
            return self._squared_acc_str

        def get_linear_str(self):
            return self._linear_acc_str

    def test_ftrl_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
        learning_rate = 0.01
        ftrl_optimizer = self.MockFtrl(
            learning_rate=learning_rate, l1=0.0, l2=0.0, lr_power=-0.5)
        params_grads = append_backward(mean_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0)
512 513
        with framework.program_guard(program, init_program):
            opts = ftrl_optimizer.apply_gradients(params_grads)
514 515
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "ftrl"])
Q
qiaolongfei 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535

        # Check accumulators
        accumulators = ftrl_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(ftrl_optimizer.get_squared_str() in accumulators)
        self.assertTrue(ftrl_optimizer.get_linear_str() in accumulators)
        squared_acc = accumulators[ftrl_optimizer.get_squared_str()]
        linear_acc = accumulators[ftrl_optimizer.get_linear_str()]
        self.assertEqual(len(squared_acc), 1)
        self.assertEqual(len(linear_acc), 1)
        self.assertTrue(mul_x.name in squared_acc)
        self.assertTrue(mul_x.name in linear_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 3)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)


M
mapingshuo 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
class TestLookaheadOptimizer(unittest.TestCase):
    def test_lookahead_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        init_block = init_program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
        init_mul_x = init_block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")

        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})

        sgd = optimizer.SGD(learning_rate=0.01)
        lookahead = optimizer.LookaheadOptimizer(sgd, alpha=0.5, k=5)
        with framework.program_guard(program, init_program):
            opts, _ = lookahead.minimize(mean_out)
570 571
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
M
mapingshuo 已提交
572 573


Q
Qiao Longfei 已提交
574 575
if __name__ == '__main__':
    unittest.main()