test_concat_op.py 21.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16 17

import gradient_checker
18
import numpy as np
19
from decorator_helper import prog_scope
20
from op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
21 22

import paddle
23
from paddle import fluid
24
from paddle.fluid import Program, core, program_guard
25 26


27
class TestConcatOp(OpTest):
28
    def setUp(self):
29
        self.op_type = "concat"
30
        self.python_api = paddle.concat
31
        self.public_python_api = paddle.concat
W
wangzhen38 已提交
32 33
        self.prim_op_type = "prim"
        self.enable_cinn = False
34
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
35 36 37
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
38 39 40 41 42 43
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
44
        self.outputs = {
45 46 47
            'Out': np.concatenate(
                (self.x0, self.x1, self.x2), axis=self.actual_axis
            )
C
chengduoZH 已提交
48
        }
49

50
    def get_dtype(self):
51
        return "float64"
52

53
    def test_check_output(self):
54 55 56 57
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)
        else:
W
wanghuancoder 已提交
58
            self.check_output()
59

60
    def test_check_grad(self):
61 62
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
W
wangzhen38 已提交
63 64 65
            self.check_grad_with_place(place, ['x0'], 'Out', check_prim=True)
            self.check_grad_with_place(place, ['x1'], 'Out', check_prim=True)
            self.check_grad_with_place(place, ['x2'], 'Out', check_prim=True)
66
        else:
W
wanghuancoder 已提交
67 68 69
            self.check_grad(['x0'], 'Out', check_prim=True)
            self.check_grad(['x1'], 'Out', check_prim=True)
            self.check_grad(['x2'], 'Out', check_prim=True)
C
chengduoZH 已提交
70 71

    def init_test_data(self):
72 73 74 75 76 77 78 79 80 81 82
        if self.dtype == np.uint16:
            x0 = np.random.random((5, 1, 4, 5)).astype(np.float32)
            self.x0 = convert_float_to_uint16(x0)
            x1 = np.random.random((5, 2, 4, 5)).astype(np.float32)
            self.x1 = convert_float_to_uint16(x1)
            x2 = np.random.random((5, 3, 4, 5)).astype(np.float32)
            self.x2 = convert_float_to_uint16(x2)
        else:
            self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
            self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
            self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
83 84 85
        self.axis = 1


86
class TestConcatOp2(TestConcatOp):
C
chengduoZH 已提交
87
    def init_test_data(self):
88 89 90
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
91
        self.axis = 1
92

93

94
@skip_check_grad_ci(
95 96
    reason="The function 'check_grad' for large inputs is too slow."
)
97 98
class TestConcatOp3(TestConcatOp):
    def init_test_data(self):
99 100 101
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
102 103 104 105 106 107
        self.axis = 1

    def test_check_grad(self):
        pass


108
@skip_check_grad_ci(
109
    reason="This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
110
)
111 112
class TestConcatOp4(TestConcatOp):
    def init_test_data(self):
113 114 115
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
116 117 118 119 120 121
        self.axis = 0

    def test_check_grad(self):
        pass


122 123
class TestConcatOp5(TestConcatOp):
    def init_test_data(self):
Z
zhupengyang 已提交
124 125 126
        self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
127 128 129
        self.axis = -3


130 131 132 133
class TestConcatOp6(TestConcatOp):
    def setUp(self):
        self.op_type = "concat"
        self.dtype = self.get_dtype()
134
        self.python_api = paddle.concat
135
        self.public_python_api = paddle.concat
W
wangzhen38 已提交
136 137
        self.prim_op_type = "prim"
        self.enable_cinn = False
138 139 140 141
        self.init_test_data()
        self.lod = [[20, 80]]
        self.out_lod = [[20, 80, 20, 80, 20, 80]]
        self.inputs = {
142 143 144 145 146
            'X': [
                ('x0', (self.x0, self.lod)),
                ('x1', (self.x1, self.lod)),
                ('x2', (self.x2, self.lod)),
            ]
147 148 149 150 151 152 153 154 155 156 157
        }
        self.attrs = {'axis': self.axis}
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis
        out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
        self.outputs = {'Out': (out, self.out_lod)}

    def test_check_output(self):
W
wanghuancoder 已提交
158
        self.check_output()
159 160

    def test_check_grad(self):
W
wanghuancoder 已提交
161 162 163
        self.check_grad(['x0'], 'Out')
        self.check_grad(['x1'], 'Out')
        self.check_grad(['x2'], 'Out')
164 165 166 167 168 169 170 171

    def init_test_data(self):
        self.x0 = np.random.random([100]).astype(self.dtype)
        self.x1 = np.random.random([100]).astype(self.dtype)
        self.x2 = np.random.random([100]).astype(self.dtype)
        self.axis = 0


W
wangzhen38 已提交
172 173 174 175
class TestConcatOp7(TestConcatOp):
    def setUp(self):
        self.op_type = "concat"
        self.python_api = paddle.concat
176
        self.public_python_api = paddle.concat
W
wangzhen38 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        self.prim_op_type = "prim"
        self.enable_cinn = True
        self.dtype = self.get_dtype()
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

        self.outputs = {
            'Out': np.concatenate(
                (self.x0, self.x1, self.x2), axis=self.actual_axis
            )
        }

    def get_dtype(self):
        return "float64"

    def test_check_output(self):
W
wanghuancoder 已提交
199
        self.check_output()
W
wangzhen38 已提交
200 201

    def test_check_grad(self):
W
wanghuancoder 已提交
202 203 204
        self.check_grad(['x0'], 'Out', check_prim=True)
        self.check_grad(['x1'], 'Out', check_prim=True)
        self.check_grad(['x2'], 'Out', check_prim=True)
W
wangzhen38 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

    def init_test_data(self):
        if self.dtype == np.uint16:
            x0 = np.random.random((5, 1, 4, 5)).astype(np.float32)
            self.x0 = convert_float_to_uint16(x0)
            x1 = np.random.random((5, 2, 4, 5)).astype(np.float32)
            self.x1 = convert_float_to_uint16(x1)
            x2 = np.random.random((5, 3, 4, 5)).astype(np.float32)
            self.x2 = convert_float_to_uint16(x2)
        else:
            self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
            self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
            self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
        self.axis = 1


221 222 223 224
def create_test_AxisTensor(parent):
    class TestConcatAxisTensor(parent):
        def setUp(self):
            self.op_type = "concat"
225
            self.python_api = paddle.concat
226
            self.public_python_api = paddle.concat
227 228 229
            self.dtype = self.get_dtype()
            self.init_test_data()

W
wangzhen38 已提交
230 231
            self.prim_op_type = "prim"
            self.enable_cinn = False
232 233
            self.inputs = {
                'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
234
                'AxisTensor': np.array([self.axis]).astype("int32"),
235 236 237 238 239
            }
            self.attrs = {}

            if self.axis < 0:
                self.actual_axis = self.axis + len(self.x0.shape)
240 241 242
                self.actual_axis = (
                    self.actual_axis if self.actual_axis > 0 else 0
                )
243 244 245 246
            else:
                self.actual_axis = self.axis

            self.outputs = {
247 248 249
                'Out': np.concatenate(
                    (self.x0, self.x1, self.x2), axis=self.actual_axis
                )
250 251 252 253 254 255 256 257 258 259 260 261
            }

    cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
    TestConcatAxisTensor.__name__ = cls_name
    globals()[cls_name] = TestConcatAxisTensor


create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)
262
create_test_AxisTensor(TestConcatOp6)
263

264
# ----------------Concat Fp16----------------
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281


def create_test_fp16(parent):
    class TestConcatFp16(parent):
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)
282
create_test_fp16(TestConcatOp6)
283

284

285
# ----------------Concat Bf16----------------
286
def create_test_bf16(parent):
287 288 289
    @unittest.skipIf(
        not paddle.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
290 291 292 293 294 295 296 297 298 299 300 301
    class TestConcatBf16(parent):
        def get_dtype(self):
            return np.uint16

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestConcatBf16.__name__ = cls_name
    globals()[cls_name] = TestConcatBf16


create_test_bf16(TestConcatOp)


302
class TestConcatOpError(unittest.TestCase):
303 304
    def test_errors(self):
        with program_guard(Program(), Program()):
305
            # The input type of concat_op should be list.
306

G
GGBond8488 已提交
307
            x1 = paddle.static.data(shape=[-1, 4], dtype='int32', name='x1')
308 309
            paddle.concat(x1)

310
            # The item in input must be Variable.
311 312 313 314 315 316
            x2 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
317
            self.assertRaises(TypeError, paddle.concat, [x2])
318
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
319

G
GGBond8488 已提交
320 321
            x4 = paddle.static.data(shape=[-1, 4], dtype='uint8', name='x4')
            x5 = paddle.static.data(shape=[-1, 4], dtype='uint8', name='x5')
322
            self.assertRaises(TypeError, paddle.concat, [x4, x5])
G
GGBond8488 已提交
323 324 325
            x6 = paddle.static.data(shape=[-1, 4], dtype='float16', name='x6')
            x7 = paddle.static.data(shape=[-1, 4], dtype='float16', name='x7')
            x8 = paddle.static.data(shape=[-1, 4], dtype='float32', name='x8')
326
            paddle.concat([x6, x7])
327

328 329
            # The type of axis in concat_op should be int or Variable.
            def test_axis_type():
330
                paddle.concat([x6, x7], 3.2)
331 332 333

            self.assertRaises(TypeError, test_axis_type)

334
            def test_input_same_dtype():
335
                paddle.concat([x7, x8])
336 337 338

            self.assertRaises(TypeError, test_input_same_dtype)

339

340
class TestConcatAPI(unittest.TestCase):
341
    def test_fluid_api(self):
342
        paddle.enable_static()
343 344 345
        x_1 = paddle.static.data(
            shape=[None, 1, 4, 5], dtype='int32', name='x_1'
        )
346
        paddle.concat([x_1, x_1], 0)
347 348 349

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
350 351
        x_2 = paddle.static.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = paddle.static.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
352 353
        positive_1_int32 = paddle.tensor.fill_constant([1], "int32", 1)
        positive_1_int64 = paddle.tensor.fill_constant([1], "int64", 1)
354 355 356
        out_1 = paddle.concat([x_2, x_3], axis=1)
        out_2 = paddle.concat([x_2, x_3], axis=positive_1_int32)
        out_3 = paddle.concat([x_2, x_3], axis=positive_1_int64)
357 358

        exe = fluid.Executor(place=fluid.CPUPlace())
359 360 361 362 363
        [res_1, res_2, res_3] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_2, "x_2": input_2, "x_3": input_3},
            fetch_list=[out_1, out_2, out_3],
        )
364 365
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
366
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
367

368
    def test_api(self):
369
        paddle.enable_static()
370
        x_1 = paddle.static.data(
371 372
            shape=[None, 1, 4, 5], dtype='int32', name='x_1'
        )
373 374 375 376
        paddle.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
377 378
        x_2 = paddle.static.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = paddle.static.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
379 380 381
        positive_1_int32 = paddle.tensor.fill_constant([1], "int32", 1)
        positive_1_int64 = paddle.tensor.fill_constant([1], "int64", 1)
        negative_int64 = paddle.tensor.fill_constant([1], "int64", -3)
382 383 384 385 386
        out_1 = paddle.concat(x=[x_2, x_3], axis=1)
        out_2 = paddle.concat(x=[x_2, x_3], axis=positive_1_int32)
        out_3 = paddle.concat(x=[x_2, x_3], axis=positive_1_int64)
        out_4 = paddle.concat(x=[x_2, x_3], axis=negative_int64)

387
        exe = paddle.static.Executor(place=paddle.CPUPlace())
388 389 390 391 392
        [res_1, res_2, res_3, res_4] = exe.run(
            paddle.static.default_main_program(),
            feed={"x_1": input_2, "x_2": input_2, "x_3": input_3},
            fetch_list=[out_1, out_2, out_3, out_4],
        )
393 394 395 396 397 398 399 400 401
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_4, np.concatenate((input_2, input_3), axis=1))

    def test_imperative(self):
        in1 = np.array([[1, 2, 3], [4, 5, 6]])
        in2 = np.array([[11, 12, 13], [14, 15, 16]])
        in3 = np.array([[21, 22], [23, 24]])
402
        paddle.disable_static()
Z
Zhou Wei 已提交
403 404 405
        x1 = paddle.to_tensor(in1)
        x2 = paddle.to_tensor(in2)
        x3 = paddle.to_tensor(in3)
406
        out1 = paddle.concat([x1, x2, x3], axis=-1)
407 408 409 410
        out2 = paddle.concat(x=[x1, x2], axis=0)
        np_out1 = np.concatenate([in1, in2, in3], axis=-1)
        np_out2 = np.concatenate([in1, in2], axis=0)
        paddle.enable_static()
411 412 413 414 415 416
        self.assertEqual((out1.numpy() == np_out1).all(), True)
        self.assertEqual((out2.numpy() == np_out2).all(), True)

    def test_errors(self):
        with program_guard(Program(), Program()):
            # The item in input must be Variable.
417 418 419 420 421 422
            x2 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
423 424
            self.assertRaises(TypeError, paddle.concat, [x2])
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
425 426
            x4 = paddle.static.data(shape=[4], dtype='uint8', name='x4')
            x5 = paddle.static.data(shape=[4], dtype='uint8', name='x5')
427
            self.assertRaises(TypeError, paddle.concat, [x4, x5])
428 429

            # The type of axis in concat_op should be int or Variable.
G
GGBond8488 已提交
430 431 432
            x6 = paddle.static.data(shape=[-1, 4], dtype='float16', name='x6')
            x7 = paddle.static.data(shape=[-1, 4], dtype='float16', name='x7')
            x8 = paddle.static.data(shape=[-1, 4], dtype='float32', name='x8')
433 434 435 436 437 438 439 440 441 442 443

            def test_axis_type():
                paddle.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

            def test_input_same_dtype():
                paddle.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

444

445 446 447 448 449 450 451
class TestConcatAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test concat api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
452
        self.python = paddle.concat
453 454 455
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
456 457 458 459 460
        self.place = (
            fluid.CUDAPlace(0)
            if fluid.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
461

462 463 464 465 466
    def set_program(self, use_fluid_api):
        paddle.enable_static()
        if use_fluid_api:
            self.program = fluid.Program()
            with fluid.program_guard(self.program):
467
                input = paddle.assign(self.x)
468
                tensor_array = paddle.tensor.create_array(dtype='float32')
469
                zero = paddle.tensor.fill_constant(
470 471
                    shape=[1], value=0, dtype="int64"
                )
472 473

                for i in range(self.iter_num):
474
                    paddle.tensor.array_write(input, zero + i, tensor_array)
475

476
                self.out_var = paddle.concat(tensor_array, axis=self.axis)
477 478 479 480
        else:
            self.program = paddle.static.Program()
            with paddle.static.program_guard(self.program):
                input = paddle.assign(self.x)
481
                tensor_array = paddle.tensor.create_array(
482 483 484
                    dtype='float32'
                )  # Api create_array is not supported in paddle 2.0 yet.
                zero = paddle.zeros(shape=[1], dtype="int64")
485

486 487
                for i in range(self.iter_num):
                    # Api array_write is not supported in paddle 2.0 yet.
488
                    paddle.tensor.array_write(input, zero + i, tensor_array)
489 490 491 492 493

                self.out_var = paddle.concat(tensor_array, axis=self.axis)

    def test_fluid_api(self):
        self._run_static_mode(use_fluid_api=True)
494

495 496
    def test_paddle_api(self):
        self._run_static_mode(use_fluid_api=False)
497

498 499
    def _run_static_mode(self, use_fluid_api):
        self.set_program(use_fluid_api)
500 501 502
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
503
        np.testing.assert_array_equal(
504 505
            res[0], np.concatenate([self.x] * self.iter_num, axis=self.axis)
        )
506 507


508 509 510 511 512 513 514 515 516 517
class TestConcatDoubleGradCheck(unittest.TestCase):
    def concat_wrapper(self, x):
        return paddle.concat(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
518
        data1 = paddle.static.data('data1', [2, 3], dtype)
519
        data1.persistable = True
G
GGBond8488 已提交
520
        data2 = paddle.static.data('data2', [2, 3], dtype)
521 522 523 524
        data2.persistable = True
        out = paddle.concat([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
525 526 527 528 529 530 531
        gradient_checker.double_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
532
        gradient_checker.double_grad_check_for_dygraph(
533 534
            self.concat_wrapper,
            [data1, data2],
535 536
            out,
            x_init=[data1_arr, data2_arr],
537 538
            place=place,
        )
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConcatTripleGradCheck(unittest.TestCase):
    def concat_wrapper(self, x):
        return paddle.concat(x, 1)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
559
        data1 = paddle.static.data('data1', [2, 3, 4], dtype)
560
        data1.persistable = True
G
GGBond8488 已提交
561
        data2 = paddle.static.data('data2', [2, 3, 4], dtype)
562 563 564 565
        data2.persistable = True
        out = paddle.concat([data1, data2], 1)
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
566 567 568 569 570 571 572
        gradient_checker.double_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
573
        gradient_checker.double_grad_check_for_dygraph(
574 575
            self.concat_wrapper,
            [data1, data2],
576 577
            out,
            x_init=[data1_arr, data2_arr],
578 579
            place=place,
        )
580 581 582 583 584 585 586 587 588 589

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


590 591
if __name__ == '__main__':
    unittest.main()