test_concat_op.py 16.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
20
import paddle.fluid as fluid
21
from paddle.fluid import compiler, Program, program_guard, core
22
import paddle
23 24


25
class TestConcatOp(OpTest):
26
    def setUp(self):
27
        self.op_type = "concat"
28
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
29 30 31
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
32 33 34 35 36 37
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
38 39
        self.outputs = {
            'Out': np.concatenate(
40
                (self.x0, self.x1, self.x2), axis=self.actual_axis)
C
chengduoZH 已提交
41
        }
42

43
    def get_dtype(self):
44
        return "float64"
45

46
    def test_check_output(self):
47 48 49 50 51
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)
        else:
            self.check_output()
52

53
    def test_check_grad(self):
54 55 56 57 58 59 60 61 62
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(place, ['x0'], 'Out')
            self.check_grad_with_place(place, ['x1'], 'Out')
            self.check_grad_with_place(place, ['x2'], 'Out')
        else:
            self.check_grad(['x0'], 'Out')
            self.check_grad(['x1'], 'Out')
            self.check_grad(['x2'], 'Out')
C
chengduoZH 已提交
63 64

    def init_test_data(self):
65 66 67 68 69 70 71 72 73 74 75
        if self.dtype == np.uint16:
            x0 = np.random.random((5, 1, 4, 5)).astype(np.float32)
            self.x0 = convert_float_to_uint16(x0)
            x1 = np.random.random((5, 2, 4, 5)).astype(np.float32)
            self.x1 = convert_float_to_uint16(x1)
            x2 = np.random.random((5, 3, 4, 5)).astype(np.float32)
            self.x2 = convert_float_to_uint16(x2)
        else:
            self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
            self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
            self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
76 77 78
        self.axis = 1


79
class TestConcatOp2(TestConcatOp):
C
chengduoZH 已提交
80
    def init_test_data(self):
81 82 83
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
84
        self.axis = 1
85

86

87 88
@skip_check_grad_ci(
    reason="The function 'check_grad' for large inputs is too slow.")
89 90
class TestConcatOp3(TestConcatOp):
    def init_test_data(self):
91 92 93
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
94 95 96 97 98 99
        self.axis = 1

    def test_check_grad(self):
        pass


100 101 102
@skip_check_grad_ci(
    reason="This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
)
103 104
class TestConcatOp4(TestConcatOp):
    def init_test_data(self):
105 106 107
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
108 109 110 111 112 113
        self.axis = 0

    def test_check_grad(self):
        pass


114 115
class TestConcatOp5(TestConcatOp):
    def init_test_data(self):
Z
zhupengyang 已提交
116 117 118
        self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
119 120 121
        self.axis = -3


122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
class TestConcatOp6(TestConcatOp):
    def setUp(self):
        self.op_type = "concat"
        self.dtype = self.get_dtype()
        self.init_test_data()
        self.lod = [[20, 80]]
        self.out_lod = [[20, 80, 20, 80, 20, 80]]
        self.inputs = {
            'X': [('x0', (self.x0, self.lod)), ('x1', (self.x1, self.lod)),
                  ('x2', (self.x2, self.lod))]
        }
        self.attrs = {'axis': self.axis}
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis
        out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
        self.outputs = {'Out': (out, self.out_lod)}

    def test_check_output(self):
        self.check_output(check_dygraph=False)

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out', check_dygraph=False)
        self.check_grad(['x1'], 'Out', check_dygraph=False)
        self.check_grad(['x2'], 'Out', check_dygraph=False)

    def init_test_data(self):
        self.x0 = np.random.random([100]).astype(self.dtype)
        self.x1 = np.random.random([100]).astype(self.dtype)
        self.x2 = np.random.random([100]).astype(self.dtype)
        self.axis = 0


157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
def create_test_AxisTensor(parent):
    class TestConcatAxisTensor(parent):
        def setUp(self):
            self.op_type = "concat"
            self.dtype = self.get_dtype()
            self.init_test_data()

            self.inputs = {
                'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
                'AxisTensor': np.array([self.axis]).astype("int32")
            }
            self.attrs = {}

            if self.axis < 0:
                self.actual_axis = self.axis + len(self.x0.shape)
                self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
            else:
                self.actual_axis = self.axis

            self.outputs = {
                'Out': np.concatenate(
                    (self.x0, self.x1, self.x2), axis=self.actual_axis)
            }

    cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
    TestConcatAxisTensor.__name__ = cls_name
    globals()[cls_name] = TestConcatAxisTensor


create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)
191
create_test_AxisTensor(TestConcatOp6)
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#----------------Concat Fp16----------------


def create_test_fp16(parent):
    class TestConcatFp16(parent):
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)
211
create_test_fp16(TestConcatOp6)
212

213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
#----------------Concat Bf16----------------
def create_test_bf16(parent):
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConcatBf16(parent):
        def get_dtype(self):
            return np.uint16

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestConcatBf16.__name__ = cls_name
    globals()[cls_name] = TestConcatBf16


create_test_bf16(TestConcatOp)


230
class TestConcatOpError(unittest.TestCase):
231 232
    def test_errors(self):
        with program_guard(Program(), Program()):
233 234 235 236 237
            # The input type of concat_op should be list.
            x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
            fluid.layers.concat(x1)
            # The item in input must be Variable.
            x2 = fluid.create_lod_tensor(
238
                np.array([[-1]]), [[1]], fluid.CPUPlace())
239 240 241
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.concat, [x2])
242
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
243 244 245 246 247
            x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
            x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
248
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
249
            fluid.layers.concat([x6, x7])
250

251 252 253 254 255 256
            # The type of axis in concat_op should be int or Variable.
            def test_axis_type():
                fluid.layers.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

257 258 259 260 261
            def test_input_same_dtype():
                fluid.layers.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

262

263
class TestConcatAPI(unittest.TestCase):
264
    def test_fluid_api(self):
265
        paddle.enable_static()
266 267 268 269 270 271 272
        x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
        fluid.layers.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
273 274
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
275
        out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
276 277
        out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
        out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
278 279

        exe = fluid.Executor(place=fluid.CPUPlace())
280
        [res_1, res_2, res_3] = exe.run(
281 282 283 284
            fluid.default_main_program(),
            feed={"x_1": input_2,
                  "x_2": input_2,
                  "x_3": input_3},
285
            fetch_list=[out_1, out_2, out_3])
286 287
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
288
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
289

290
    def test_api(self):
291
        paddle.enable_static()
L
liuyuhui 已提交
292 293
        x_1 = paddle.fluid.data(
            shape=[None, 1, 4, 5], dtype='int32', name='x_1')
294 295 296 297 298 299
        paddle.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
300 301 302
        positive_1_int32 = paddle.fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = paddle.fluid.layers.fill_constant([1], "int64", 1)
        negative_int64 = paddle.fluid.layers.fill_constant([1], "int64", -3)
303 304 305 306 307
        out_1 = paddle.concat(x=[x_2, x_3], axis=1)
        out_2 = paddle.concat(x=[x_2, x_3], axis=positive_1_int32)
        out_3 = paddle.concat(x=[x_2, x_3], axis=positive_1_int64)
        out_4 = paddle.concat(x=[x_2, x_3], axis=negative_int64)

308
        exe = paddle.static.Executor(place=paddle.CPUPlace())
309
        [res_1, res_2, res_3, res_4] = exe.run(
310
            paddle.static.default_main_program(),
311 312 313 314 315 316 317 318 319 320 321 322 323
            feed={"x_1": input_2,
                  "x_2": input_2,
                  "x_3": input_3},
            fetch_list=[out_1, out_2, out_3, out_4])
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_4, np.concatenate((input_2, input_3), axis=1))

    def test_imperative(self):
        in1 = np.array([[1, 2, 3], [4, 5, 6]])
        in2 = np.array([[11, 12, 13], [14, 15, 16]])
        in3 = np.array([[21, 22], [23, 24]])
324
        paddle.disable_static()
Z
Zhou Wei 已提交
325 326 327
        x1 = paddle.to_tensor(in1)
        x2 = paddle.to_tensor(in2)
        x3 = paddle.to_tensor(in3)
328 329 330 331 332
        out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
        out2 = paddle.concat(x=[x1, x2], axis=0)
        np_out1 = np.concatenate([in1, in2, in3], axis=-1)
        np_out2 = np.concatenate([in1, in2], axis=0)
        paddle.enable_static()
333 334 335 336 337 338 339 340 341 342 343 344
        self.assertEqual((out1.numpy() == np_out1).all(), True)
        self.assertEqual((out2.numpy() == np_out2).all(), True)

    def test_errors(self):
        with program_guard(Program(), Program()):
            # The item in input must be Variable.
            x2 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, paddle.concat, [x2])
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
345 346
            x4 = paddle.fluid.data(shape=[4], dtype='uint8', name='x4')
            x5 = paddle.fluid.data(shape=[4], dtype='uint8', name='x5')
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])

            # The type of axis in concat_op should be int or Variable.
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')

            def test_axis_type():
                paddle.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

            def test_input_same_dtype():
                paddle.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

364

365 366 367 368 369 370 371 372 373 374 375 376 377
class TestConcatAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test concat api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
    def set_program(self, use_fluid_api):
        paddle.enable_static()
        if use_fluid_api:
            self.program = fluid.Program()
            with fluid.program_guard(self.program):
                input = fluid.layers.assign(self.x)
                tensor_array = fluid.layers.create_array(dtype='float32')
                zero = fluid.layers.fill_constant(
                    shape=[1], value=0, dtype="int64")

                for i in range(self.iter_num):
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = fluid.layers.concat(tensor_array, axis=self.axis)
        else:
            self.program = paddle.static.Program()
            with paddle.static.program_guard(self.program):
                input = paddle.assign(self.x)
                tensor_array = fluid.layers.create_array(
                    dtype='float32'
                )  # Api create_array is not supported in paddle 2.0 yet.
                zero = paddle.zeros(shape=[1], dtype="int64")
400

401 402 403 404 405 406 407 408
                for i in range(self.iter_num):
                    # Api array_write is not supported in paddle 2.0 yet.
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = paddle.concat(tensor_array, axis=self.axis)

    def test_fluid_api(self):
        self._run_static_mode(use_fluid_api=True)
409

410 411
    def test_paddle_api(self):
        self._run_static_mode(use_fluid_api=False)
412

413 414
    def _run_static_mode(self, use_fluid_api):
        self.set_program(use_fluid_api)
415 416 417 418 419 420 421 422 423 424
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
        self.assertTrue(
            np.array_equal(
                res[0],
                np.concatenate(
                    [self.x] * self.iter_num, axis=self.axis)))


425 426
if __name__ == '__main__':
    unittest.main()