test_concat_op.py 17.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
20
import paddle.fluid as fluid
21
from paddle.fluid import compiler, Program, program_guard, core
22
from paddle.fluid.framework import _test_eager_guard
23
import paddle
24 25


26
class TestConcatOp(OpTest):
27

28
    def setUp(self):
29
        self.op_type = "concat"
30
        self.python_api = paddle.concat
31
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
32 33 34
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
35 36 37 38 39 40
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
41
        self.outputs = {
42 43
            'Out':
            np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
C
chengduoZH 已提交
44
        }
45

46
    def get_dtype(self):
47
        return "float64"
48

49
    def test_check_output(self):
50 51 52 53
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)
        else:
54
            self.check_output(check_eager=True)
55

56
    def test_check_grad(self):
57 58 59 60 61 62
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(place, ['x0'], 'Out')
            self.check_grad_with_place(place, ['x1'], 'Out')
            self.check_grad_with_place(place, ['x2'], 'Out')
        else:
63 64 65
            self.check_grad(['x0'], 'Out', check_eager=True)
            self.check_grad(['x1'], 'Out', check_eager=True)
            self.check_grad(['x2'], 'Out', check_eager=True)
C
chengduoZH 已提交
66 67

    def init_test_data(self):
68 69 70 71 72 73 74 75 76 77 78
        if self.dtype == np.uint16:
            x0 = np.random.random((5, 1, 4, 5)).astype(np.float32)
            self.x0 = convert_float_to_uint16(x0)
            x1 = np.random.random((5, 2, 4, 5)).astype(np.float32)
            self.x1 = convert_float_to_uint16(x1)
            x2 = np.random.random((5, 3, 4, 5)).astype(np.float32)
            self.x2 = convert_float_to_uint16(x2)
        else:
            self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
            self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
            self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
79 80 81
        self.axis = 1


82
class TestConcatOp2(TestConcatOp):
83

C
chengduoZH 已提交
84
    def init_test_data(self):
85 86 87
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
88
        self.axis = 1
89

90

91 92
@skip_check_grad_ci(
    reason="The function 'check_grad' for large inputs is too slow.")
93
class TestConcatOp3(TestConcatOp):
94

95
    def init_test_data(self):
96 97 98
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
99 100 101 102 103 104
        self.axis = 1

    def test_check_grad(self):
        pass


105
@skip_check_grad_ci(
106 107
    reason=
    "This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
108
)
109
class TestConcatOp4(TestConcatOp):
110

111
    def init_test_data(self):
112 113 114
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
115 116 117 118 119 120
        self.axis = 0

    def test_check_grad(self):
        pass


121
class TestConcatOp5(TestConcatOp):
122

123
    def init_test_data(self):
Z
zhupengyang 已提交
124 125 126
        self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
127 128 129
        self.axis = -3


130
class TestConcatOp6(TestConcatOp):
131

132 133 134
    def setUp(self):
        self.op_type = "concat"
        self.dtype = self.get_dtype()
135
        self.python_api = paddle.concat
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        self.init_test_data()
        self.lod = [[20, 80]]
        self.out_lod = [[20, 80, 20, 80, 20, 80]]
        self.inputs = {
            'X': [('x0', (self.x0, self.lod)), ('x1', (self.x1, self.lod)),
                  ('x2', (self.x2, self.lod))]
        }
        self.attrs = {'axis': self.axis}
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis
        out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
        self.outputs = {'Out': (out, self.out_lod)}

    def test_check_output(self):
153
        self.check_output(check_eager=True)
154 155

    def test_check_grad(self):
156 157 158
        self.check_grad(['x0'], 'Out', check_eager=True)
        self.check_grad(['x1'], 'Out', check_eager=True)
        self.check_grad(['x2'], 'Out', check_eager=True)
159 160 161 162 163 164 165 166

    def init_test_data(self):
        self.x0 = np.random.random([100]).astype(self.dtype)
        self.x1 = np.random.random([100]).astype(self.dtype)
        self.x2 = np.random.random([100]).astype(self.dtype)
        self.axis = 0


167
def create_test_AxisTensor(parent):
168

169
    class TestConcatAxisTensor(parent):
170

171 172
        def setUp(self):
            self.op_type = "concat"
173
            self.python_api = paddle.concat
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
            self.dtype = self.get_dtype()
            self.init_test_data()

            self.inputs = {
                'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
                'AxisTensor': np.array([self.axis]).astype("int32")
            }
            self.attrs = {}

            if self.axis < 0:
                self.actual_axis = self.axis + len(self.x0.shape)
                self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
            else:
                self.actual_axis = self.axis

            self.outputs = {
190 191 192
                'Out':
                np.concatenate((self.x0, self.x1, self.x2),
                               axis=self.actual_axis)
193 194 195 196 197 198 199 200 201 202 203 204
            }

    cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
    TestConcatAxisTensor.__name__ = cls_name
    globals()[cls_name] = TestConcatAxisTensor


create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)
205
create_test_AxisTensor(TestConcatOp6)
206

207 208 209 210
#----------------Concat Fp16----------------


def create_test_fp16(parent):
211

212
    class TestConcatFp16(parent):
213

214 215 216 217 218 219 220 221 222 223 224 225 226
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)
227
create_test_fp16(TestConcatOp6)
228

229

230 231
#----------------Concat Bf16----------------
def create_test_bf16(parent):
232

233 234 235
    @unittest.skipIf(not paddle.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestConcatBf16(parent):
236

237 238 239 240 241 242 243 244 245 246 247
        def get_dtype(self):
            return np.uint16

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestConcatBf16.__name__ = cls_name
    globals()[cls_name] = TestConcatBf16


create_test_bf16(TestConcatOp)


248
class TestConcatOpError(unittest.TestCase):
249

250 251
    def test_errors(self):
        with program_guard(Program(), Program()):
252 253 254 255
            # The input type of concat_op should be list.
            x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
            fluid.layers.concat(x1)
            # The item in input must be Variable.
256 257 258 259
            x2 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
            x3 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
260
            self.assertRaises(TypeError, fluid.layers.concat, [x2])
261
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
262 263 264 265 266
            x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
            x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
267
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
268
            fluid.layers.concat([x6, x7])
269

270 271 272 273 274 275
            # The type of axis in concat_op should be int or Variable.
            def test_axis_type():
                fluid.layers.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

276 277 278 279 280
            def test_input_same_dtype():
                fluid.layers.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

281

282
class TestConcatAPI(unittest.TestCase):
283

284
    def test_fluid_api(self):
285
        paddle.enable_static()
286 287 288 289 290 291 292
        x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
        fluid.layers.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
293 294
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
295
        out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
296 297
        out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
        out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
298 299

        exe = fluid.Executor(place=fluid.CPUPlace())
300 301 302 303 304 305 306
        [res_1, res_2, res_3] = exe.run(fluid.default_main_program(),
                                        feed={
                                            "x_1": input_2,
                                            "x_2": input_2,
                                            "x_3": input_3
                                        },
                                        fetch_list=[out_1, out_2, out_3])
307 308
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
309
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
310

311
    def test_api(self):
312
        paddle.enable_static()
313 314 315
        x_1 = paddle.fluid.data(shape=[None, 1, 4, 5],
                                dtype='int32',
                                name='x_1')
316 317 318 319 320 321
        paddle.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
322 323 324
        positive_1_int32 = paddle.fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = paddle.fluid.layers.fill_constant([1], "int64", 1)
        negative_int64 = paddle.fluid.layers.fill_constant([1], "int64", -3)
325 326 327 328 329
        out_1 = paddle.concat(x=[x_2, x_3], axis=1)
        out_2 = paddle.concat(x=[x_2, x_3], axis=positive_1_int32)
        out_3 = paddle.concat(x=[x_2, x_3], axis=positive_1_int64)
        out_4 = paddle.concat(x=[x_2, x_3], axis=negative_int64)

330
        exe = paddle.static.Executor(place=paddle.CPUPlace())
331 332 333 334 335 336 337 338
        [res_1, res_2, res_3,
         res_4] = exe.run(paddle.static.default_main_program(),
                          feed={
                              "x_1": input_2,
                              "x_2": input_2,
                              "x_3": input_3
                          },
                          fetch_list=[out_1, out_2, out_3, out_4])
339 340 341 342 343 344 345 346 347
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_4, np.concatenate((input_2, input_3), axis=1))

    def test_imperative(self):
        in1 = np.array([[1, 2, 3], [4, 5, 6]])
        in2 = np.array([[11, 12, 13], [14, 15, 16]])
        in3 = np.array([[21, 22], [23, 24]])
348
        paddle.disable_static()
Z
Zhou Wei 已提交
349 350 351
        x1 = paddle.to_tensor(in1)
        x2 = paddle.to_tensor(in2)
        x3 = paddle.to_tensor(in3)
352 353 354 355 356
        out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
        out2 = paddle.concat(x=[x1, x2], axis=0)
        np_out1 = np.concatenate([in1, in2, in3], axis=-1)
        np_out2 = np.concatenate([in1, in2], axis=0)
        paddle.enable_static()
357 358 359
        self.assertEqual((out1.numpy() == np_out1).all(), True)
        self.assertEqual((out2.numpy() == np_out2).all(), True)

360 361 362 363 364 365
    def test_eager(self):
        with _test_eager_guard():
            self.test_api()
            self.test_fluid_api()
            self.test_imperative()

366 367 368
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The item in input must be Variable.
369 370 371 372
            x2 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
            x3 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                         fluid.CPUPlace())
373 374
            self.assertRaises(TypeError, paddle.concat, [x2])
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
375 376
            x4 = paddle.fluid.data(shape=[4], dtype='uint8', name='x4')
            x5 = paddle.fluid.data(shape=[4], dtype='uint8', name='x5')
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])

            # The type of axis in concat_op should be int or Variable.
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')

            def test_axis_type():
                paddle.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

            def test_input_same_dtype():
                paddle.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

394

395 396 397 398 399 400 401
class TestConcatAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test concat api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
402
        self.python = paddle.concat
403 404 405 406 407 408
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
        self.place = fluid.CUDAPlace(0) \
            if fluid.is_compiled_with_cuda() else fluid.CPUPlace()

409 410 411 412 413 414 415
    def set_program(self, use_fluid_api):
        paddle.enable_static()
        if use_fluid_api:
            self.program = fluid.Program()
            with fluid.program_guard(self.program):
                input = fluid.layers.assign(self.x)
                tensor_array = fluid.layers.create_array(dtype='float32')
416 417 418
                zero = fluid.layers.fill_constant(shape=[1],
                                                  value=0,
                                                  dtype="int64")
419 420 421 422 423 424 425 426 427 428 429 430 431

                for i in range(self.iter_num):
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = fluid.layers.concat(tensor_array, axis=self.axis)
        else:
            self.program = paddle.static.Program()
            with paddle.static.program_guard(self.program):
                input = paddle.assign(self.x)
                tensor_array = fluid.layers.create_array(
                    dtype='float32'
                )  # Api create_array is not supported in paddle 2.0 yet.
                zero = paddle.zeros(shape=[1], dtype="int64")
432

433 434 435 436 437 438 439 440
                for i in range(self.iter_num):
                    # Api array_write is not supported in paddle 2.0 yet.
                    fluid.layers.array_write(input, zero + i, tensor_array)

                self.out_var = paddle.concat(tensor_array, axis=self.axis)

    def test_fluid_api(self):
        self._run_static_mode(use_fluid_api=True)
441

442 443
    def test_paddle_api(self):
        self._run_static_mode(use_fluid_api=False)
444

445 446
    def _run_static_mode(self, use_fluid_api):
        self.set_program(use_fluid_api)
447 448 449 450 451
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
        self.assertTrue(
            np.array_equal(
452 453
                res[0], np.concatenate([self.x] * self.iter_num,
                                       axis=self.axis)))
454 455


456 457
if __name__ == '__main__':
    unittest.main()