test_concat_op.py 19.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16 17

import gradient_checker
18
import numpy as np
19 20 21 22 23 24
from decorator_helper import prog_scope

import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid import Program, core, program_guard
25 26 27
from paddle.fluid.tests.unittests.op_test import (
    OpTest,
    convert_float_to_uint16,
28
    skip_check_grad_ci,
29
)
30 31


32
class TestConcatOp(OpTest):
33
    def setUp(self):
34
        self.op_type = "concat"
35
        self.python_api = paddle.concat
36
        self.dtype = self.get_dtype()
C
chengduoZH 已提交
37 38 39
        self.init_test_data()
        self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
        self.attrs = {'axis': self.axis}
40 41 42 43 44 45
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis

C
chengduoZH 已提交
46
        self.outputs = {
47 48 49
            'Out': np.concatenate(
                (self.x0, self.x1, self.x2), axis=self.actual_axis
            )
C
chengduoZH 已提交
50
        }
51

52
    def get_dtype(self):
53
        return "float64"
54

55
    def test_check_output(self):
56 57 58 59
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place)
        else:
60
            self.check_output(check_eager=True)
61

62
    def test_check_grad(self):
63 64 65 66 67 68
        if self.dtype == np.uint16:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(place, ['x0'], 'Out')
            self.check_grad_with_place(place, ['x1'], 'Out')
            self.check_grad_with_place(place, ['x2'], 'Out')
        else:
69 70 71
            self.check_grad(['x0'], 'Out', check_eager=True)
            self.check_grad(['x1'], 'Out', check_eager=True)
            self.check_grad(['x2'], 'Out', check_eager=True)
C
chengduoZH 已提交
72 73

    def init_test_data(self):
74 75 76 77 78 79 80 81 82 83 84
        if self.dtype == np.uint16:
            x0 = np.random.random((5, 1, 4, 5)).astype(np.float32)
            self.x0 = convert_float_to_uint16(x0)
            x1 = np.random.random((5, 2, 4, 5)).astype(np.float32)
            self.x1 = convert_float_to_uint16(x1)
            x2 = np.random.random((5, 3, 4, 5)).astype(np.float32)
            self.x2 = convert_float_to_uint16(x2)
        else:
            self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
            self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
            self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
85 86 87
        self.axis = 1


88
class TestConcatOp2(TestConcatOp):
C
chengduoZH 已提交
89
    def init_test_data(self):
90 91 92
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chengduoZH 已提交
93
        self.axis = 1
94

95

96
@skip_check_grad_ci(
97 98
    reason="The function 'check_grad' for large inputs is too slow."
)
99 100
class TestConcatOp3(TestConcatOp):
    def init_test_data(self):
101 102 103
        self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
        self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
        self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
104 105 106 107 108 109
        self.axis = 1

    def test_check_grad(self):
        pass


110
@skip_check_grad_ci(
111
    reason="This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
112
)
113 114
class TestConcatOp4(TestConcatOp):
    def init_test_data(self):
115 116 117
        self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
118 119 120 121 122 123
        self.axis = 0

    def test_check_grad(self):
        pass


124 125
class TestConcatOp5(TestConcatOp):
    def init_test_data(self):
Z
zhupengyang 已提交
126 127 128
        self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
        self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
        self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
129 130 131
        self.axis = -3


132 133 134 135
class TestConcatOp6(TestConcatOp):
    def setUp(self):
        self.op_type = "concat"
        self.dtype = self.get_dtype()
136
        self.python_api = paddle.concat
137 138 139 140
        self.init_test_data()
        self.lod = [[20, 80]]
        self.out_lod = [[20, 80, 20, 80, 20, 80]]
        self.inputs = {
141 142 143 144 145
            'X': [
                ('x0', (self.x0, self.lod)),
                ('x1', (self.x1, self.lod)),
                ('x2', (self.x2, self.lod)),
            ]
146 147 148 149 150 151 152 153 154 155 156
        }
        self.attrs = {'axis': self.axis}
        if self.axis < 0:
            self.actual_axis = self.axis + len(self.x0.shape)
            self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
        else:
            self.actual_axis = self.axis
        out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
        self.outputs = {'Out': (out, self.out_lod)}

    def test_check_output(self):
157
        self.check_output(check_eager=True)
158 159

    def test_check_grad(self):
160 161 162
        self.check_grad(['x0'], 'Out', check_eager=True)
        self.check_grad(['x1'], 'Out', check_eager=True)
        self.check_grad(['x2'], 'Out', check_eager=True)
163 164 165 166 167 168 169 170

    def init_test_data(self):
        self.x0 = np.random.random([100]).astype(self.dtype)
        self.x1 = np.random.random([100]).astype(self.dtype)
        self.x2 = np.random.random([100]).astype(self.dtype)
        self.axis = 0


171 172 173 174
def create_test_AxisTensor(parent):
    class TestConcatAxisTensor(parent):
        def setUp(self):
            self.op_type = "concat"
175
            self.python_api = paddle.concat
176 177 178 179 180
            self.dtype = self.get_dtype()
            self.init_test_data()

            self.inputs = {
                'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)],
181
                'AxisTensor': np.array([self.axis]).astype("int32"),
182 183 184 185 186
            }
            self.attrs = {}

            if self.axis < 0:
                self.actual_axis = self.axis + len(self.x0.shape)
187 188 189
                self.actual_axis = (
                    self.actual_axis if self.actual_axis > 0 else 0
                )
190 191 192 193
            else:
                self.actual_axis = self.axis

            self.outputs = {
194 195 196
                'Out': np.concatenate(
                    (self.x0, self.x1, self.x2), axis=self.actual_axis
                )
197 198 199 200 201 202 203 204 205 206 207 208
            }

    cls_name = "{0}_{1}".format(parent.__name__, "AxisTensor")
    TestConcatAxisTensor.__name__ = cls_name
    globals()[cls_name] = TestConcatAxisTensor


create_test_AxisTensor(TestConcatOp)
create_test_AxisTensor(TestConcatOp2)
create_test_AxisTensor(TestConcatOp3)
create_test_AxisTensor(TestConcatOp4)
create_test_AxisTensor(TestConcatOp5)
209
create_test_AxisTensor(TestConcatOp6)
210

211
# ----------------Concat Fp16----------------
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228


def create_test_fp16(parent):
    class TestConcatFp16(parent):
        def get_dtype(self):
            return np.float16

    cls_name = "{0}_{1}".format(parent.__name__, "Fp16")
    TestConcatFp16.__name__ = cls_name
    globals()[cls_name] = TestConcatFp16


create_test_fp16(TestConcatOp)
create_test_fp16(TestConcatOp2)
create_test_fp16(TestConcatOp3)
create_test_fp16(TestConcatOp4)
create_test_fp16(TestConcatOp5)
229
create_test_fp16(TestConcatOp6)
230

231

232
# ----------------Concat Bf16----------------
233
def create_test_bf16(parent):
234 235 236
    @unittest.skipIf(
        not paddle.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
237 238 239 240 241 242 243 244 245 246 247 248
    class TestConcatBf16(parent):
        def get_dtype(self):
            return np.uint16

    cls_name = "{0}_{1}".format(parent.__name__, "Bf16")
    TestConcatBf16.__name__ = cls_name
    globals()[cls_name] = TestConcatBf16


create_test_bf16(TestConcatOp)


249
class TestConcatOpError(unittest.TestCase):
250 251
    def test_errors(self):
        with program_guard(Program(), Program()):
252 253 254 255
            # The input type of concat_op should be list.
            x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
            fluid.layers.concat(x1)
            # The item in input must be Variable.
256 257 258 259 260 261
            x2 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
262
            self.assertRaises(TypeError, fluid.layers.concat, [x2])
263
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
264 265 266 267 268
            x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
            x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
269
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
270
            fluid.layers.concat([x6, x7])
271

272 273 274 275 276 277
            # The type of axis in concat_op should be int or Variable.
            def test_axis_type():
                fluid.layers.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

278 279 280 281 282
            def test_input_same_dtype():
                fluid.layers.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

283

284
class TestConcatAPI(unittest.TestCase):
285
    def test_fluid_api(self):
286
        paddle.enable_static()
287 288 289 290 291 292 293
        x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='int32', name='x_1')
        fluid.layers.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
294 295
        positive_1_int32 = fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = fluid.layers.fill_constant([1], "int64", 1)
296
        out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
297 298
        out_2 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int32)
        out_3 = fluid.layers.concat(input=[x_2, x_3], axis=positive_1_int64)
299 300

        exe = fluid.Executor(place=fluid.CPUPlace())
301 302 303 304 305
        [res_1, res_2, res_3] = exe.run(
            fluid.default_main_program(),
            feed={"x_1": input_2, "x_2": input_2, "x_3": input_3},
            fetch_list=[out_1, out_2, out_3],
        )
306 307
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
308
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
309

310
    def test_api(self):
311
        paddle.enable_static()
312 313 314
        x_1 = paddle.fluid.data(
            shape=[None, 1, 4, 5], dtype='int32', name='x_1'
        )
315 316 317 318 319 320
        paddle.concat([x_1, x_1], 0)

        input_2 = np.random.random([2, 1, 4, 5]).astype("int32")
        input_3 = np.random.random([2, 2, 4, 5]).astype("int32")
        x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='int32', name='x_2')
        x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='int32', name='x_3')
321 322 323
        positive_1_int32 = paddle.fluid.layers.fill_constant([1], "int32", 1)
        positive_1_int64 = paddle.fluid.layers.fill_constant([1], "int64", 1)
        negative_int64 = paddle.fluid.layers.fill_constant([1], "int64", -3)
324 325 326 327 328
        out_1 = paddle.concat(x=[x_2, x_3], axis=1)
        out_2 = paddle.concat(x=[x_2, x_3], axis=positive_1_int32)
        out_3 = paddle.concat(x=[x_2, x_3], axis=positive_1_int64)
        out_4 = paddle.concat(x=[x_2, x_3], axis=negative_int64)

329
        exe = paddle.static.Executor(place=paddle.CPUPlace())
330 331 332 333 334
        [res_1, res_2, res_3, res_4] = exe.run(
            paddle.static.default_main_program(),
            feed={"x_1": input_2, "x_2": input_2, "x_3": input_3},
            fetch_list=[out_1, out_2, out_3, out_4],
        )
335 336 337 338 339 340 341 342 343
        assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
        assert np.array_equal(res_4, np.concatenate((input_2, input_3), axis=1))

    def test_imperative(self):
        in1 = np.array([[1, 2, 3], [4, 5, 6]])
        in2 = np.array([[11, 12, 13], [14, 15, 16]])
        in3 = np.array([[21, 22], [23, 24]])
344
        paddle.disable_static()
Z
Zhou Wei 已提交
345 346 347
        x1 = paddle.to_tensor(in1)
        x2 = paddle.to_tensor(in2)
        x3 = paddle.to_tensor(in3)
348 349 350 351 352
        out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
        out2 = paddle.concat(x=[x1, x2], axis=0)
        np_out1 = np.concatenate([in1, in2, in3], axis=-1)
        np_out2 = np.concatenate([in1, in2], axis=0)
        paddle.enable_static()
353 354 355 356 357 358
        self.assertEqual((out1.numpy() == np_out1).all(), True)
        self.assertEqual((out2.numpy() == np_out2).all(), True)

    def test_errors(self):
        with program_guard(Program(), Program()):
            # The item in input must be Variable.
359 360 361 362 363 364
            x2 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
            x3 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
365 366
            self.assertRaises(TypeError, paddle.concat, [x2])
            # The input dtype of concat_op must be float16, float32, float64, int32, int64.
367 368
            x4 = paddle.fluid.data(shape=[4], dtype='uint8', name='x4')
            x5 = paddle.fluid.data(shape=[4], dtype='uint8', name='x5')
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
            self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])

            # The type of axis in concat_op should be int or Variable.
            x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
            x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
            x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')

            def test_axis_type():
                paddle.concat([x6, x7], 3.2)

            self.assertRaises(TypeError, test_axis_type)

            def test_input_same_dtype():
                paddle.concat([x7, x8])

            self.assertRaises(TypeError, test_input_same_dtype)

386

387 388 389 390 391 392 393
class TestConcatAPIWithLoDTensorArray(unittest.TestCase):
    """
    Test concat api when the input(x) is a LoDTensorArray.
    """

    def setUp(self):
        self.axis = 1
394
        self.python = paddle.concat
395 396 397
        self.iter_num = 3
        self.input_shape = [2, 3]
        self.x = np.random.random(self.input_shape).astype("float32")
398 399 400 401 402
        self.place = (
            fluid.CUDAPlace(0)
            if fluid.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
403

404 405 406 407 408 409
    def set_program(self, use_fluid_api):
        paddle.enable_static()
        if use_fluid_api:
            self.program = fluid.Program()
            with fluid.program_guard(self.program):
                input = fluid.layers.assign(self.x)
410
                tensor_array = paddle.tensor.create_array(dtype='float32')
411 412 413
                zero = fluid.layers.fill_constant(
                    shape=[1], value=0, dtype="int64"
                )
414 415

                for i in range(self.iter_num):
416
                    paddle.tensor.array_write(input, zero + i, tensor_array)
417 418 419 420 421 422

                self.out_var = fluid.layers.concat(tensor_array, axis=self.axis)
        else:
            self.program = paddle.static.Program()
            with paddle.static.program_guard(self.program):
                input = paddle.assign(self.x)
423
                tensor_array = paddle.tensor.create_array(
424 425 426
                    dtype='float32'
                )  # Api create_array is not supported in paddle 2.0 yet.
                zero = paddle.zeros(shape=[1], dtype="int64")
427

428 429
                for i in range(self.iter_num):
                    # Api array_write is not supported in paddle 2.0 yet.
430
                    paddle.tensor.array_write(input, zero + i, tensor_array)
431 432 433 434 435

                self.out_var = paddle.concat(tensor_array, axis=self.axis)

    def test_fluid_api(self):
        self._run_static_mode(use_fluid_api=True)
436

437 438
    def test_paddle_api(self):
        self._run_static_mode(use_fluid_api=False)
439

440 441
    def _run_static_mode(self, use_fluid_api):
        self.set_program(use_fluid_api)
442 443 444
        self.assertTrue(self.out_var.shape[self.axis] == -1)
        exe = fluid.Executor(self.place)
        res = exe.run(self.program, fetch_list=self.out_var)
445
        np.testing.assert_array_equal(
446 447
            res[0], np.concatenate([self.x] * self.iter_num, axis=self.axis)
        )
448 449


450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
class TestConcatDoubleGradCheck(unittest.TestCase):
    def concat_wrapper(self, x):
        return paddle.concat(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [2, 3], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [2, 3], False, dtype)
        data2.persistable = True
        out = paddle.concat([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
467 468 469 470 471 472 473
        gradient_checker.double_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
474
        gradient_checker.double_grad_check_for_dygraph(
475 476
            self.concat_wrapper,
            [data1, data2],
477 478
            out,
            x_init=[data1_arr, data2_arr],
479 480
            place=place,
        )
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConcatTripleGradCheck(unittest.TestCase):
    def concat_wrapper(self, x):
        return paddle.concat(x, 1)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [2, 3, 4], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [2, 3, 4], False, dtype)
        data2.persistable = True
        out = paddle.concat([data1, data2], 1)
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data2.shape).astype(dtype)
508 509 510 511 512 513 514
        gradient_checker.double_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
515
        gradient_checker.double_grad_check_for_dygraph(
516 517
            self.concat_wrapper,
            [data1, data2],
518 519
            out,
            x_init=[data1_arr, data2_arr],
520 521
            place=place,
        )
522 523 524 525 526 527 528 529 530 531

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


532 533
if __name__ == '__main__':
    unittest.main()