varbase_patch_methods.py 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22
from .. import framework
姜永久 已提交
23
from ..framework import convert_np_dtype_to_dtype_
24
from .. import core
25
from .. import unique_name
26 27 28 29 30 31 32 33 34
from ..framework import (
    Variable,
    Parameter,
    ParamBase,
    _getitem_impl_,
    _setitem_impl_,
    EagerParamBase,
    in_dygraph_mode,
)
35
from .base import switch_to_static_graph
36
from .math_op_patch import monkey_patch_math_varbase
L
Leo Chen 已提交
37
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
38
import paddle.utils.deprecated as deprecated
C
chenjian 已提交
39
import paddle.profiler as profiler
40
from paddle.profiler.utils import in_profiler_mode
41
from paddle import _C_ops, _legacy_C_ops
42
from paddle.device import get_all_custom_device_type
43
from paddle.fluid.framework import _global_flags
44

45 46
_grad_scalar = None

47

48
class TensorHookRemoveHelper:
49 50
    """
    A helper class that for removing Tensor gradient's hook.
51
    NOTE(wuweilong):the operation weakref.ref(tensor) will cause some unexpected errors in eager mode.
52 53 54
    """

    def __init__(self, tensor, hook_id):
55
        self._tensor = (
56 57 58
            tensor
            if framework.global_var._in_eager_mode_
            else weakref.ref(tensor)
59
        )
60 61 62 63 64 65 66 67 68
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
69 70 71 72 73
        tensor = (
            self._tensor
            if framework.global_var._in_eager_mode_
            else self._tensor()
        )
74 75 76 77 78 79 80
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
81 82 83
                    % (self._hook_id, tensor.name),
                    RuntimeWarning,
                )
84 85 86
        return False


87 88 89
_already_patch_repr = False


90
def monkey_patch_varbase():
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
118

119
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
120
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
121
        attr_not_need_keys = ['grad', 'T', 'place', '_place_str']
122
        param_keys = ['stop_gradient', 'trainable']
J
Jiabin Yang 已提交
123
        if isinstance(self, (ParamBase, EagerParamBase)):
124
            attr_kwargs = self.__dict__.copy()
125 126
            for key in param_keys:
                attr_kwargs[key] = getattr(self, key)
127
        else:
128 129
            attr_names = []
            for name in dir(self):
130
                if name not in attr_not_need_keys:
131 132 133
                    if not inspect.ismethod(
                        getattr(self, name)
                    ) and not name.startswith('_'):
134
                        attr_names.append(name)
135 136 137 138 139 140
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

141 142 143 144
        # If specify block, use it instead of self.block
        if 'block' in kwargs:
            attr_kwargs['block'] = kwargs['block']

145 146
        attr_kwargs.update(kwargs)

J
Jiabin Yang 已提交
147
        if to_parameter or isinstance(self, (ParamBase, EagerParamBase)):
148
            del attr_kwargs['persistable']
149 150
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
151 152 153 154 155
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

156 157 158 159 160
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
161
            **This API is ONLY available in Dygraph mode**
162 163 164 165 166 167 168 169 170 171 172

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
173
                from paddle.nn import Linear
174 175
                import numpy as np

176
                data = np.ones([3, 1024], dtype='float32')
177
                with fluid.dygraph.guard():
178
                    linear = Linear(1024, 4)
179
                    t = to_variable(data)
180
                    linear(t)  # call with default weight
181
                    custom_weight = np.random.randn(1024, 4).astype("float32")
182 183
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
184 185

        """
186
        if framework.global_var._in_eager_mode_:
187
            base_tensor = core.eager.Tensor
188 189
        else:
            base_tensor = core.VarBase
190 191 192
        assert isinstance(
            value, (np.ndarray, base_tensor, dict, str)
        ), "Variable set_value function, arguments type only support Variable, numpy, VarBase, dict, string."
S
Steffy-zxf 已提交
193 194 195 196 197

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
198 199
                self.name, len(self), len(value)
            )
S
Steffy-zxf 已提交
200 201 202 203 204
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
205 206 207 208 209
            assert self.shape == list(
                value.shape
            ), "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                self.name, self.shape, value.shape
            )
C
crystal 已提交
210 211 212 213 214

            if isinstance(value, base_tensor):
                dtype = value.dtype
            else:
                dtype = convert_np_dtype_to_dtype_(value.dtype)
215

216 217 218 219 220
            assert (
                self.dtype == dtype
            ), "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                self.name, self.dtype, dtype
            )
221

222
            # NOTE(wuweilong): self could be VarBase or Tensor, the subsequent behavior are defined in different files
223
            # if self is VarBase, method value() return Variable that bindded in imperative.cc, get_tensor() bindded in pybind.cc
224
            # if self is Tensor, method value() return self that defined in this file, get_tensor() defined in eager_method.cc
225
            # this Interface behavior will be unifed in the future.
226 227 228
            self.value().get_tensor().set(
                value, framework._current_expected_place()
            )
229 230

    @framework.dygraph_only
231
    def backward(self, grad_tensor=None, retain_graph=False):
232
        """
233
        Run backward of current Graph which starts from current Tensor.
234

235
        The new gradient will accumulate on previous gradient.
236 237 238

        You can clear gradient by ``Tensor.clear_grad()`` .

239
        Args:
C
chenjian 已提交
240 241
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None,
            the initial gradient values of the current Tensor would be Tensor filled with 1.0;
242
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
243
            The default value is None.
244

245
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
246
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
247
                :code:`retain_graph` to True, then the grads will be retained. Thus, setting it to False is much more memory-efficient.
248
                Defaults to False.
249 250 251 252 253 254
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

255
                import paddle
256 257 258 259 260 261 262 263 264 265 266 267 268 269
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
270

271 272 273 274 275 276 277 278 279 280 281
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

282
        """
Q
qizhaoaoe 已提交
283 284
        from paddle.distributed.parallel import scale_loss

J
Jiabin Yang 已提交
285
        if framework._non_static_mode():
286 287
            if in_profiler_mode():
                record_event = profiler.RecordEvent(
288 289
                    "Gradient Backward", profiler.TracerEventType.Backward
                )
290
                record_event.begin()
291
            if grad_tensor is not None:
292
                if framework.global_var._in_eager_mode_:
293
                    assert isinstance(
294 295
                        grad_tensor, core.eager.Tensor
                    ), "The type of grad_tensor must be paddle.Tensor"
296 297
                else:
                    assert isinstance(
298 299
                        grad_tensor, paddle.Tensor
                    ), "The type of grad_tensor must be paddle.Tensor"
300 301 302 303 304
                assert (
                    grad_tensor.shape == self.shape
                ), "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape
                )
305

306
            if framework.global_var._in_eager_mode_:
307 308 309 310
                if grad_tensor is None:
                    grad_tensor = []
                else:
                    grad_tensor = [grad_tensor]
311 312 313
            if _grad_scalar:
                # When using amp with Fleet DistributedStrategy, we do loss scaling implicitly.
                self = _grad_scalar.scale(self)
314 315 316 317 318
            if (
                paddle.is_compiled_with_xpu()
                or paddle.is_compiled_with_npu()
                or paddle.is_compiled_with_mlu()
            ):
319
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
320
                scaled_loss = scale_loss(self)
321
                if framework.global_var._in_eager_mode_:
322 323 324
                    core.eager.run_backward(
                        [scaled_loss], grad_tensor, retain_graph
                    )
325
                else:
326 327 328 329 330 331
                    core.dygraph_run_backward(
                        [scaled_loss],
                        [grad_tensor],
                        retain_graph,
                        framework._dygraph_tracer(),
                    )
332
            else:
333
                if framework.global_var._in_eager_mode_:
334 335
                    core.eager.run_backward([self], grad_tensor, retain_graph)
                else:
336 337 338 339 340 341
                    core.dygraph_run_backward(
                        [self],
                        [grad_tensor],
                        retain_graph,
                        framework._dygraph_tracer(),
                    )
342 343
            if in_profiler_mode():
                record_event.end()
344 345
        else:
            raise ValueError(
346 347
                "Variable.backward() is only available in DyGraph mode"
            )
348 349

    @framework.dygraph_only
350 351
    @deprecated(
        since="2.1.0",
352
        level=1,
353
        reason="Please use tensor.grad, which returns the tensor value of the gradient.",
354
    )
355 356
    def gradient(self):
        """
357 358 359 360
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

361
        Get the Gradient of Current Tensor.
362 363

        Returns:
364
            ndarray: Numpy value of the gradient of current Tensor
365 366 367 368

        Examples:
            .. code-block:: python

369
                import paddle
370

371 372 373
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
374
                print("grad of x: {}".format(x.gradient()))
375
                # [500.]
376 377

        """
378
        if framework.global_var._in_eager_mode_:
379
            if self.grad is None:
380
                return None
381
            if self.grad.is_selected_rows():
382 383
                return (np.array(self.grad), np.array(self.grad.rows()))
            return np.array(self.grad)
384 385 386
        else:
            if self._grad_ivar() is None:
                return None
387

388 389
            new_ivar = self._grad_ivar()
            # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
390
            if (
391
                _global_flags()['FLAGS_npu_storage_format']
392 393
                and 'npu' in get_all_custom_device_type()
            ):
394 395
                new_ivar = paddle.incubate._npu_identity(x=new_ivar, format=-1)
            new_ivar = new_ivar._copy_to(core.CPUPlace(), True)
396
            if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
397 398 399 400
                return (
                    np.array(new_ivar.value().get_selected_rows().get_tensor()),
                    np.array(new_ivar.value().get_selected_rows().rows()),
                )
401 402
            else:
                return np.array(new_ivar.value().get_tensor())
403

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
465 466
                "Cannot register hook on a tensor that stop gradient."
            )
467 468 469 470 471

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

472 473 474 475 476 477 478 479 480
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):

        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
481
            elif isinstance(
482 483 484 485 486 487 488 489 490
                device,
                (
                    core.CPUPlace,
                    core.CUDAPlace,
                    core.CUDAPinnedPlace,
                    core.XPUPlace,
                    core.CustomPlace,
                ),
            ):
491 492 493
                pass
            else:
                raise ValueError(
494
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace(), paddle.XPUPlace() or paddle.CustomPlace(), but the type of device is "
495 496
                    + type(device).__name__
                )
497 498 499 500 501

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
502 503
                blocking, bool
            ), "blocking value error, must be the True, False or None"
504 505 506 507 508 509

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype
510 511
            if type(dtype) is str:
                dtype = framework.convert_np_dtype_to_dtype_(dtype)
512 513 514

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
515
                size_dtype = core.size_of_dtype(dtype)
516 517 518 519
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
520 521
                    ((t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
                )
522
                gpu_memory_available = core.gpu_memory_available()
523 524 525 526 527 528 529 530 531 532 533 534 535
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
536
                with paddle.fluid.framework._dygraph_place_guard(
537 538
                    place=t_used.place
                ):
539
                    t_casted = t_used.cast(dtype=dtype)
540 541 542 543
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
544 545 546 547
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
548 549 550 551 552 553 554 555 556 557 558 559

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

560 561 562
    @property
    def grad(self):
        """
563
        .. warning::
C
chenjian 已提交
564
          This API will return the tensor value of the gradient. If you want
565 566 567 568 569 570 571 572 573 574 575
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
576

577 578 579 580 581 582 583
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
584 585 586 587
        msg = (
            'tensor.grad will return the tensor value of the gradient.'
            ' This is an incompatible upgrade for tensor.grad API. '
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. '
588
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
589
        )
590
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
591 592 593
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
594
        warnings.warn(warning_msg)
595
        return self._grad_ivar()
596

597 598 599 600 601 602
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

603 604
    def item(self, *args):
        """
C
chenjian 已提交
605
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a
606
        single-element Tensor.
607 608 609 610 611 612 613 614 615

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
C
chenjian 已提交
616

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
        return self._getitem_from_offset(*args).item()

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

666 667
    def __str__(self):
        """
668
        Convert a VarBase object to a readable string.
669

670
        Returns(str): A readable string.
671 672 673 674

        Examples:
            .. code-block:: python

675
                import paddle
676
                x = paddle.rand([2, 5])
677
                print(x)
C
chenjian 已提交
678

679 680 681
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
682
        """
683
        if framework.global_var._in_eager_mode_:
684
            from paddle.tensor.to_string import tensor_to_string
685

686
            return tensor_to_string(self)
687 688
        else:
            from paddle.tensor.to_string import to_string
689

690
            return to_string(self)
691

692 693 694 695 696 697 698 699 700 701 702
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
C
chenjian 已提交
703

704 705 706 707 708 709 710 711 712 713 714 715 716
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
717
        if framework.global_var._in_eager_mode_:
718
            new_varbase = core.eager.Tensor()
719 720
        else:
            new_varbase = core.VarBase()
721 722 723 724 725
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

726 727 728
    @property
    def block(self):
        return framework.default_main_program().global_block()
729

730
    def __nonzero__(self):
zhouweiwei2014's avatar
zhouweiwei2014 已提交
731 732
        # np.prod([]) -> np.float64, so use int
        numel = int(np.prod(self.shape))
733 734 735
        assert (
            numel == 1
        ), "When Variable is used as the condition of if/while , Variable can only contain one element."
736
        if framework.global_var._in_eager_mode_:
737
            assert self._is_initialized(), "tensor not initialized"
738
            return bool(self.item() > 0)
739 740 741
        else:
            tensor = self.value().get_tensor()
            assert tensor._is_initialized(), "tensor not initialized"
742
            return bool(self.item() > 0)
743 744 745 746

    def __bool__(self):
        return self.__nonzero__()

747
    def __array__(self, dtype=None):
748 749
        """
        Returns a numpy array shows the value of current Tensor.
C
chenjian 已提交
750

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
768
        array = self.numpy(False)
769 770 771
        if dtype:
            array = array.astype(dtype)
        return array
772

W
WeiXin 已提交
773
    def contain_tensor(item):
774
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
775 776 777 778
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
779 780 781 782 783
                if (
                    isinstance(slice_item.start, Variable)
                    or isinstance(slice_item.stop, Variable)
                    or isinstance(slice_item.step, Variable)
                ):
W
WeiXin 已提交
784 785
                    return True
            else:
786 787 788 789
                if (
                    isinstance(slice_item, (Variable, np.ndarray))
                    and Variable.dtype != paddle.bool
                ):
W
WeiXin 已提交
790 791 792
                    return True
        return False

793
    def __getitem__(self, item):
W
WeiXin 已提交
794 795 796 797 798 799
        def is_list_tuple(index, contain_type):
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
800 801 802
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
803
                return True
804

W
WeiXin 已提交
805 806 807 808 809 810 811 812
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
813 814 815 816 817 818 819 820
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
821
    def __setitem__(self, item, value):
Z
zyfncg 已提交
822 823 824
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
825

Z
zyfncg 已提交
826 827 828 829 830 831 832 833
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
Z
zyfncg 已提交
856 857
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
858 859 860
            return _setitem_impl_(self, item, value)

        else:
861
            if framework.global_var._in_eager_mode_:
W
wanghuancoder 已提交
862 863 864 865
                return self.__setitem_eager_tensor__(item, value)
            else:
                # Call c++ func __setitem_varbase__ to speedup.
                return self.__setitem_varbase__(item, value)
W
WeiXin 已提交
866

867 868 869 870
    @framework.dygraph_only
    def _set_grad_ivar(self, value):
        if isinstance(self, EagerParamBase):
            self.grad = value
871
            self._unset_fake_empty()
872 873
        else:
            raise TypeError(
874 875
                "_set_grad_ivar is only supported for Parameter Tensor"
            )
876

877 878 879 880
    @framework.dygraph_only
    def value(self):
        return self

J
Jiabin Yang 已提交
881 882 883 884 885 886 887 888
    @framework.dygraph_only
    def _slice(self, begin_idx, end_idx):
        return core.eager.Tensor(self.get_tensor()._slice(begin_idx, end_idx))

    @framework.dygraph_only
    def _numel(self):
        return self.get_tensor()._numel()

B
Baibaifan 已提交
889 890 891 892
    @framework.dygraph_only
    def _clear_data(self):
        self.get_tensor()._clear()

893
    @framework.dygraph_only
894 895
    def _use_gpudnn(self, use_gpudnn=True):
        return self._tensor_use_gpudnn(use_gpudnn)
896

897 898
    @framework.dygraph_only
    def _uva(self, device_id=0):
W
Weilong Wu 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
        '''
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
        '''
914 915
        self._tensor_uva(device_id)

J
Jiabin Yang 已提交
916 917 918 919 920 921 922 923 924 925 926
    @framework.dygraph_only
    def cpu(self):
        if self.place.is_cpu_place():
            return self
        else:
            res = self._copy_to(core.CPUPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

    @framework.dygraph_only
927
    def cuda(self, device_id=None, blocking=True):
928
        if device_id is None:
929 930 931 932 933 934 935 936 937
            res_place = framework._current_expected_place()
            if not isinstance(res_place, core.CUDAPlace):
                res_place = core.CUDAPlace(0)
        elif isinstance(device_id, int):
            res_place = core.CUDAPlace(device_id)
        else:
            raise ValueError("device_id must be int|None")

        if self.place._equals(res_place):
J
Jiabin Yang 已提交
938 939
            return self
        else:
940
            res = self._copy_to(res_place, True)
J
Jiabin Yang 已提交
941 942 943 944
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

W
wanghuancoder 已提交
945 946 947 948 949 950 951 952 953 954
    @framework.dygraph_only
    def pin_memory(self):
        if self.place.is_cuda_pinned_place():
            return self
        else:
            res = self._copy_to(core.CUDAPinnedPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

955 956
    @framework.dygraph_only
    def values(self):
Z
zhangkaihuo 已提交
957 958 959 960 961 962 963 964 965 966 967 968
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Get the values of current SparseTensor(COO or CSR).

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
969 970 971 972 973 974
                indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                values = [1, 2, 3, 4, 5]
                dense_shape = [3, 4]
                sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int32'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
                print(sparse_x.values())
                #[1, 2, 3, 4, 5]
Z
zhangkaihuo 已提交
975
        """
976
        return _C_ops.sparse_values(self)
977 978 979

    @framework.dygraph_only
    def to_dense(self):
Z
zhangkaihuo 已提交
980 981 982 983 984 985 986 987 988 989 990 991
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current SparseTensor(COO or CSR) to DenseTensor.

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
992 993 994 995 996 997 998 999
                indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                values = [1, 2, 3, 4, 5]
                dense_shape = [3, 4]
                sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int64'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
                dense_x = sparse_x.to_dense()
                #[[0., 1., 0., 2.],
                # [0., 0., 3., 0.],
                # [4., 5., 0., 0.]]
Z
zhangkaihuo 已提交
1000 1001
        """

1002
        return _C_ops.sparse_to_dense(self)
1003 1004 1005

    @framework.dygraph_only
    def to_sparse_coo(self, sparse_dim):
Z
zhangkaihuo 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current DenseTensor to SparseTensor in COO format.

        Returns:
            Tensor: A SparseCooTensor

        Examples:
            .. code-block:: python

                import paddle
1018 1019 1020 1021 1022 1023
                dense_x = [[0, 1, 0, 2], [0, 0, 3, 4]]
                dense_x = paddle.to_tensor(dense_x, dtype='float32')
                sparse_x = dense_x.to_sparse_coo(sparse_dim=2)
                #indices=[[0, 0, 1, 1],
                #         [1, 3, 2, 3]],
                #values=[1., 2., 3., 4.]
Z
zhangkaihuo 已提交
1024 1025
        """

1026
        return _C_ops.sparse_to_sparse_coo(self, sparse_dim)
1027

1028 1029 1030
    def __hash__(self):
        return hash(id(self))

1031
    if framework.global_var._in_eager_mode_ and not hasattr(core, "eager"):
1032 1033
        return

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    for method_name, method in (
        ("__bool__", __bool__),
        ("__nonzero__", __nonzero__),
        ("_to_static_var", _to_static_var),
        ("set_value", set_value),
        ("block", block),
        ("backward", backward),
        ("clear_grad", clear_grad),
        ("inplace_version", inplace_version),
        ("gradient", gradient),
        ("register_hook", register_hook),
        ("__str__", __str__),
        ("__repr__", __str__),
        ("__deepcopy__", __deepcopy__),
        ("__module__", "paddle"),
        ("__array__", __array__),
        ("__getitem__", __getitem__),
        ("item", item),
        ("__setitem__", __setitem__),
        ("_to", _to),
        ("values", values),
        ("to_dense", to_dense),
        ("to_sparse_coo", to_sparse_coo),
    ):
1058
        if framework.global_var._in_eager_mode_:
1059
            setattr(core.eager.Tensor, method_name, method)
L
Leo Chen 已提交
1060
        else:
1061 1062
            setattr(core.VarBase, method_name, method)

1063
    if framework.global_var._in_eager_mode_:
1064 1065
        setattr(core.eager.Tensor, "_set_grad_ivar", _set_grad_ivar)
        setattr(core.eager.Tensor, "value", value)
J
Jiabin Yang 已提交
1066 1067
        setattr(core.eager.Tensor, "cpu", cpu)
        setattr(core.eager.Tensor, "cuda", cuda)
W
wanghuancoder 已提交
1068
        setattr(core.eager.Tensor, "pin_memory", pin_memory)
J
Jiabin Yang 已提交
1069 1070
        setattr(core.eager.Tensor, "_slice", _slice)
        setattr(core.eager.Tensor, "_numel", _numel)
1071
        setattr(core.eager.Tensor, "_uva", _uva)
B
Baibaifan 已提交
1072
        setattr(core.eager.Tensor, "_clear_data", _clear_data)
1073
        setattr(core.eager.Tensor, "__hash__", __hash__)
1074
        setattr(core.eager.Tensor, "_use_gpudnn", _use_gpudnn)
1075 1076 1077 1078 1079 1080 1081 1082 1083
    else:
        setattr(core.VarBase, "__name__", "Tensor")
        setattr(core.VarBase, "grad", grad)

    global _already_patch_repr
    if not _already_patch_repr:
        # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
        # So, we need to overwrite it to a more readable one.
        # See details in https://github.com/pybind/pybind11/issues/2537.
1084
        origin = getattr(core.VarDesc.VarType, "__str__")
1085 1086 1087

        def dtype_str(dtype):
            if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
1088 1089 1090
                numpy_dtype = _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
                if numpy_dtype == 'uint16':
                    numpy_dtype = 'bfloat16'
1091
                prefix = 'paddle.'
1092
                return prefix + numpy_dtype
1093 1094 1095
            else:
                # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
                return origin(dtype)
L
Leo Chen 已提交
1096

1097
        setattr(core.VarDesc.VarType, "__str__", dtype_str)
1098
        _already_patch_repr = True
L
Leo Chen 已提交
1099

1100 1101
    # patch math methods for varbase
    monkey_patch_math_varbase()