varbase_patch_methods.py 21.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19 20

import paddle
21 22
from .. import framework
from .. import core
23
from .. import unique_name
24
from ..framework import Variable, Parameter, ParamBase, _getitem_impl_
25
from .base import switch_to_static_graph
26
from .math_op_patch import monkey_patch_math_varbase
27
from .parallel import scale_loss
L
Leo Chen 已提交
28
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
29
import paddle.utils.deprecated as deprecated
30 31


32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
class TensorHookRemoveHelper(object):
    """
    A helper class that for removing Tensor gradient's hook.
    """

    def __init__(self, tensor, hook_id):
        self._tensor_ref = weakref.ref(tensor)
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
        tensor = self._tensor_ref()
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
                    % (self._hook_id, tensor.name), RuntimeWarning)
        return False


60
def monkey_patch_varbase():
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
88

89
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
90 91
        # It will fail. So, for propery in dygraph only, should not let it getattr(self, attr, None).
        attr_not_need_keys = ['grad']
92 93 94
        if isinstance(self, ParamBase):
            attr_kwargs = self.__dict__.copy()
        else:
95 96 97 98 99 100
            attr_names = []
            for name in dir(self):
                if name not in attr_not_need_keys and not (
                        inspect.ismethod(getattr(self, name)) or
                        name.startswith('_')):
                    attr_names.append(name)
101 102 103 104 105 106 107 108 109 110
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

        if to_parameter or isinstance(self, ParamBase):
            del attr_kwargs['persistable']
111 112
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
113 114 115 116 117
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

118 119 120 121 122
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
123
            **This API is ONLY available in Dygraph mode**
124 125 126 127 128 129 130 131 132 133 134

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
135
                from paddle.fluid.dygraph import Linear
136 137
                import numpy as np

138
                data = np.ones([3, 1024], dtype='float32')
139
                with fluid.dygraph.guard():
140
                    linear = fluid.dygraph.Linear(1024, 4)
141
                    t = to_variable(data)
142
                    linear(t)  # call with default weight
143
                    custom_weight = np.random.randn(1024, 4).astype("float32")
144 145
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

        """
        assert isinstance(value, (np.ndarray, core.VarBase)), \
            "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
        if isinstance(value, core.VarBase):
            value_np = value.numpy()

        self_tensor_np = self.numpy()

        assert self_tensor_np.shape == value_np.shape, \
            "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                self.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype, \
            "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                self.name, self_tensor_np.dtype, value_np.dtype)

        self.value().get_tensor().set(value_np,
                                      framework._current_expected_place())

    @framework.dygraph_only
169
    def backward(self, grad_tensor=None, retain_graph=False):
170
        """
171
        Run backward of current Graph which starts from current Tensor.
172

173 174 175 176
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

177
        Args:
178 179 180 181 182
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None, 
            the initial gradient values of the current Tensor would be Tensor filled with 1.0; 
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

183
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
184 185 186
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
187 188 189 190 191 192
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

193
                import paddle
194 195 196 197 198 199 200 201 202 203 204 205 206 207
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
208

209 210 211 212 213 214 215 216 217 218 219
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

220 221
        """
        if framework.in_dygraph_mode():
222 223 224 225 226 227 228 229
            if grad_tensor is not None:
                assert isinstance(
                    grad_tensor, paddle.
                    Tensor), "The type of grad_tensot must be paddle.Tensor"
                assert grad_tensor.shape == self.shape, \
                    "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape)

230 231
            if paddle.is_compiled_with_xpu():
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
232
                scaled_loss = scale_loss(self)
233 234 235
                core.dygraph_run_backward([scaled_loss], [grad_tensor],
                                          retain_graph,
                                          framework._dygraph_tracer())
236
            else:
237 238
                core.dygraph_run_backward([self], [grad_tensor], retain_graph,
                                          framework._dygraph_tracer())
239 240
        else:
            raise ValueError(
T
tianshuo78520a 已提交
241
                "Variable.backward() is only available in DyGraph mode")
242 243

    @framework.dygraph_only
244 245
    @deprecated(
        since="2.1.0",
246 247
        level=1,
        reason="Please use tensor.grad, which returns the tensor value of the gradient."
248
    )
249 250
    def gradient(self):
        """
251 252 253 254
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

255
        Get the Gradient of Current Tensor.
256 257

        Returns:
258
            ndarray: Numpy value of the gradient of current Tensor
259 260 261 262

        Examples:
            .. code-block:: python

263
                import paddle
264

265 266 267
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
268
                print("grad of x: {}".format(x.gradient()))
269
                # [500.]
270 271 272

        """
        if self._grad_ivar() is None:
273 274
            return None

275 276 277 278 279 280 281
        new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
        if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
            return (np.array(new_ivar.value().get_selected_rows().get_tensor()),
                    np.array(new_ivar.value().get_selected_rows().rows()))
        else:
            return np.array(new_ivar.value().get_tensor())

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
                "Cannot register hook on a tensor that stop gradient.")

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

349 350 351
    @property
    def grad(self):
        """
352 353 354 355 356 357 358 359 360 361 362 363 364
        .. warning::
          This API will return the tensor value of the gradient. If you want 
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
365

366 367 368 369 370 371 372
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
373 374 375
        msg = "tensor.grad will return the tensor value of the gradient."
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
        warnings.warn(warning_msg)
376
        return self._grad_ivar()
377

378 379 380 381 382 383
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    def item(self, *args):
        """
        Convert one element Tensor to a Python scalar.

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
        
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

                x = paddle.to_tensor([1, 2])
                x.item()               #ValueError: only one element tensor can be converted to Python scalar when no input coordinates.
        """
        return self._getitem_from_offset(*args).item()

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

448 449
    def __str__(self):
        """
450
        Convert a VarBase object to a readable string.
451

452
        Returns(str): A readable string.
453 454 455 456

        Examples:
            .. code-block:: python

457
                import paddle
458
                x = paddle.rand([2, 5])
459
                print(x)
460 461 462 463
                
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
464
        """
465 466
        from paddle.tensor.to_string import to_string
        return to_string(self)
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
                
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
        new_varbase = core.VarBase()
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

499 500 501
    @property
    def block(self):
        return framework.default_main_program().global_block()
502

503 504 505 506 507 508 509 510 511 512
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
        tensor = self.value().get_tensor()
        assert tensor._is_initialized(), "tensor not initialized"
        return bool(np.all(tensor.__array__() > 0))

    def __bool__(self):
        return self.__nonzero__()

513
    def __array__(self, dtype=None):
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
        """
        Returns a numpy array shows the value of current Tensor.
        
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
        array = self.numpy()
        if dtype:
            array = array.astype(dtype)
        return array
538

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    def __getitem__(self, item):
        def contain_tensor(item):
            if not isinstance(item, tuple):
                item = [item]

            for slice_item in item:
                if isinstance(slice_item, slice):
                    if isinstance(slice_item.start, Variable)  \
                        or isinstance(slice_item.stop, Variable) \
                           or isinstance(slice_item.step, Variable):
                        return True
                else:
                    if isinstance(slice_item, Variable):
                        return True
            return False

        if contain_tensor(item):
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

564 565
    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
566
        ("_to_static_var", _to_static_var), ("set_value", set_value),
567 568
        ("block", block), ("backward", backward), ("clear_grad", clear_grad),
        ("inplace_version", inplace_version), ("grad", grad),
569 570
        ("gradient", gradient), ("register_hook", register_hook),
        ("__str__", __str__), ("__repr__", __str__),
571
        ("__deepcopy__", __deepcopy__), ("__module__", "paddle"),
572
        ("__name__", "Tensor"), ("__array__", __array__),
573
        ("__getitem__", __getitem__), ("item", item)):
574
        setattr(core.VarBase, method_name, method)
575

L
Leo Chen 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
    # So, we need to overwrite it to a more readable one.
    # See details in https://github.com/pybind/pybind11/issues/2537.
    origin = getattr(core.VarDesc.VarType, "__repr__")

    def dtype_str(dtype):
        if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
            prefix = 'paddle.'
            return prefix + _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
        else:
            # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
            return origin(dtype)

    setattr(core.VarDesc.VarType, "__repr__", dtype_str)

591 592
    # patch math methods for varbase
    monkey_patch_math_varbase()