varbase_patch_methods.py 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19 20

import paddle
21 22
from .. import framework
from .. import core
23
from .. import unique_name
24 25
from ..framework import Variable, Parameter, ParamBase
from .base import switch_to_static_graph
26
from .math_op_patch import monkey_patch_math_varbase
27
from .parallel import scale_loss
L
Leo Chen 已提交
28
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
29 30


31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
class TensorHookRemoveHelper(object):
    """
    A helper class that for removing Tensor gradient's hook.
    """

    def __init__(self, tensor, hook_id):
        self._tensor_ref = weakref.ref(tensor)
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
        tensor = self._tensor_ref()
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
                    % (self._hook_id, tensor.name), RuntimeWarning)
        return False


59
def monkey_patch_varbase():
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
87 88 89 90

        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph. 
        # It will fail. So, for propery in dygraph only, should not let it getattr(self, attr, None).
        attr_not_need_keys = ['grad']
91 92 93
        if isinstance(self, ParamBase):
            attr_kwargs = self.__dict__.copy()
        else:
94 95 96 97 98 99
            attr_names = []
            for name in dir(self):
                if name not in attr_not_need_keys and not (
                        inspect.ismethod(getattr(self, name)) or
                        name.startswith('_')):
                    attr_names.append(name)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

        if to_parameter or isinstance(self, ParamBase):
            del attr_kwargs['persistable']
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

115 116 117 118 119
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
120
            **This API is ONLY available in Dygraph mode**
121 122 123 124 125 126 127 128 129 130 131

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
132
                from paddle.fluid.dygraph import Linear
133 134
                import numpy as np

135
                data = np.ones([3, 1024], dtype='float32')
136
                with fluid.dygraph.guard():
137
                    linear = fluid.dygraph.Linear(1024, 4)
138
                    t = to_variable(data)
139
                    linear(t)  # call with default weight
140
                    custom_weight = np.random.randn(1024, 4).astype("float32")
141 142
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

        """
        assert isinstance(value, (np.ndarray, core.VarBase)), \
            "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
        if isinstance(value, core.VarBase):
            value_np = value.numpy()

        self_tensor_np = self.numpy()

        assert self_tensor_np.shape == value_np.shape, \
            "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                self.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype, \
            "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                self.name, self_tensor_np.dtype, value_np.dtype)

        self.value().get_tensor().set(value_np,
                                      framework._current_expected_place())

    @framework.dygraph_only
166
    def backward(self, retain_graph=False):
167
        """
168
        Run backward of current Graph which starts from current Tensor.
169

170 171 172 173
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

174
        Args:
175
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
176 177 178
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
179 180 181 182 183 184 185

        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

186 187 188 189 190 191 192 193 194 195 196 197 198 199
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
200 201 202

        """
        if framework.in_dygraph_mode():
203 204
            if paddle.is_compiled_with_xpu():
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
205 206 207 208 209
                scaled_loss = scale_loss(self)
                scaled_loss._run_backward(framework._dygraph_tracer(),
                                          retain_graph)
            else:
                self._run_backward(framework._dygraph_tracer(), retain_graph)
210 211
        else:
            raise ValueError(
T
tianshuo78520a 已提交
212
                "Variable.backward() is only available in DyGraph mode")
213 214 215 216

    @framework.dygraph_only
    def gradient(self):
        """
217
        Get the Gradient of Current Tensor.
218 219

        Returns:
220
            ndarray: Numpy value of the gradient of current Tensor
221 222 223 224

        Examples:
            .. code-block:: python

225
                import paddle
226

227 228 229 230 231
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # [500.]
232 233 234

        """
        if self._grad_ivar() is None:
235 236
            return None

237 238 239 240 241 242 243
        new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
        if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
            return (np.array(new_ivar.value().get_selected_rows().get_tensor()),
                    np.array(new_ivar.value().get_selected_rows().rows()))
        else:
            return np.array(new_ivar.value().get_tensor())

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
                "Cannot register hook on a tensor that stop gradient.")

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

311 312 313 314 315 316 317 318
    @property
    def grad(self):
        """
        The alias of gradient().
        """

        return self.gradient()

319 320 321 322 323 324
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

346 347
    def __str__(self):
        """
348
        Convert a VarBase object to a readable string.
349

350
        Returns(str): A readable string.
351 352 353 354

        Examples:
            .. code-block:: python

355
                import paddle
356
                x = paddle.rand([2, 5])
357
                print(x)
358 359 360 361
                
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
362
        """
363 364
        from paddle.tensor.to_string import to_string
        return to_string(self)
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
                
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
        new_varbase = core.VarBase()
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

397 398 399
    @property
    def block(self):
        return framework.default_main_program().global_block()
400

401 402 403 404 405 406 407 408 409 410 411 412
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
        tensor = self.value().get_tensor()
        assert tensor._is_initialized(), "tensor not initialized"
        return bool(np.all(tensor.__array__() > 0))

    def __bool__(self):
        return self.__nonzero__()

    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
413
        ("_to_static_var", _to_static_var), ("set_value", set_value),
414 415
        ("block", block), ("backward", backward), ("clear_grad", clear_grad),
        ("inplace_version", inplace_version), ("grad", grad),
416 417
        ("gradient", gradient), ("register_hook", register_hook),
        ("__str__", __str__), ("__repr__", __str__),
418 419
        ("__deepcopy__", __deepcopy__), ("__module__", "paddle"),
        ("__name__", "Tensor")):
420
        setattr(core.VarBase, method_name, method)
421

L
Leo Chen 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
    # So, we need to overwrite it to a more readable one.
    # See details in https://github.com/pybind/pybind11/issues/2537.
    origin = getattr(core.VarDesc.VarType, "__repr__")

    def dtype_str(dtype):
        if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
            prefix = 'paddle.'
            return prefix + _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
        else:
            # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
            return origin(dtype)

    setattr(core.VarDesc.VarType, "__repr__", dtype_str)

437 438
    # patch math methods for varbase
    monkey_patch_math_varbase()