varbase_patch_methods.py 31.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22 23
from .. import framework
from .. import core
24
from .. import unique_name
25
from ..framework import Variable, Parameter, ParamBase, _getitem_impl_, _setitem_impl_, _in_eager_mode, EagerParamBase
26
from .base import switch_to_static_graph
27
from .math_op_patch import monkey_patch_math_varbase
28
from .parallel import scale_loss
L
Leo Chen 已提交
29
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
30
import paddle.utils.deprecated as deprecated
C
chenjian 已提交
31
import paddle.profiler as profiler
H
hong 已提交
32
from paddle import _C_ops
33 34


35 36 37
class TensorHookRemoveHelper(object):
    """
    A helper class that for removing Tensor gradient's hook.
38
    NOTE(wuweilong):the operation weakref.ref(tensor) will cause some unexpected errors in eager mode.
39 40 41
    """

    def __init__(self, tensor, hook_id):
42
        self._tensor = tensor if core._in_eager_mode() else weakref.ref(tensor)
43 44 45 46 47 48 49 50 51
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
52
        tensor = self._tensor if core._in_eager_mode() else self._tensor()
53 54 55 56 57 58 59 60 61 62 63
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
                    % (self._hook_id, tensor.name), RuntimeWarning)
        return False


64 65 66
_already_patch_repr = False


67
def monkey_patch_varbase():
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
95

96
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
97 98
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
        attr_not_need_keys = ['grad', 'T']
J
Jiabin Yang 已提交
99
        if isinstance(self, (ParamBase, EagerParamBase)):
100 101
            attr_kwargs = self.__dict__.copy()
        else:
102 103
            attr_names = []
            for name in dir(self):
104 105 106 107
                if name not in attr_not_need_keys:
                    if not inspect.ismethod(getattr(
                            self, name)) and not name.startswith('_'):
                        attr_names.append(name)
108 109 110 111 112 113 114 115
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

        attr_kwargs.update(kwargs)

J
Jiabin Yang 已提交
116
        if to_parameter or isinstance(self, (ParamBase, EagerParamBase)):
117
            del attr_kwargs['persistable']
118 119
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
120 121 122 123 124
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

125 126 127 128 129
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
130
            **This API is ONLY available in Dygraph mode**
131 132 133 134 135 136 137 138 139 140 141

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
142
                from paddle.fluid.dygraph import Linear
143 144
                import numpy as np

145
                data = np.ones([3, 1024], dtype='float32')
146
                with fluid.dygraph.guard():
147
                    linear = fluid.dygraph.Linear(1024, 4)
148
                    t = to_variable(data)
149
                    linear(t)  # call with default weight
150
                    custom_weight = np.random.randn(1024, 4).astype("float32")
151 152
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
153 154

        """
155
        if core._in_eager_mode():
156
            base_tensor = core.eager.Tensor
157 158 159
        else:
            base_tensor = core.VarBase
        assert isinstance(value, (np.ndarray, base_tensor, dict, str)), \
S
Steffy-zxf 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172
            "Variable set_value function, arguments type only support Variable, numpy, VarBase, dict, string."

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
                self.name, len(self), len(value))
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
            value_np = value
173
            if isinstance(value, base_tensor):
S
Steffy-zxf 已提交
174
                value_np = value.numpy()
175

S
Steffy-zxf 已提交
176
            self_tensor_np = self.numpy()
177

S
Steffy-zxf 已提交
178 179 180
            assert self_tensor_np.shape == value_np.shape, \
                "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                    self.name, self_tensor_np.shape, value_np.shape)
181

S
Steffy-zxf 已提交
182 183 184
            assert self_tensor_np.dtype == value_np.dtype, \
                "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                    self.name, self_tensor_np.dtype, value_np.dtype)
185

186
            # NOTE(wuweilong): self could be VarBase or Tensor, the subsequent behavior are defined in different files
187
            # if self is VarBase, method value() return Variable that bindded in imperative.cc, get_tensor() bindded in pybind.cc
188
            # if self is Tensor, method value() return self that defined in this file, get_tensor() defined in eager_method.cc
189
            # this Interface behavior will be unifed in the future.
S
Steffy-zxf 已提交
190 191
            self.value().get_tensor().set(value_np,
                                          framework._current_expected_place())
192 193

    @framework.dygraph_only
194
    def backward(self, grad_tensor=None, retain_graph=False):
195
        """
196
        Run backward of current Graph which starts from current Tensor.
197

198 199 200 201
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

202
        Args:
C
chenjian 已提交
203 204
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None,
            the initial gradient values of the current Tensor would be Tensor filled with 1.0;
205 206 207
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

208
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
209 210 211
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
212 213 214 215 216 217
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

218
                import paddle
219 220 221 222 223 224 225 226 227 228 229 230 231 232
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
233

234 235 236 237 238 239 240 241 242 243 244
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

245 246
        """
        if framework.in_dygraph_mode():
C
chenjian 已提交
247 248 249
            record_event = profiler.RecordEvent(
                "Gradient Backward", profiler.TracerEventType.Backward)
            record_event.begin()
250
            if grad_tensor is not None:
251
                if core._in_eager_mode():
252
                    assert isinstance(
253 254
                        grad_tensor, core.eager.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
255 256 257 258
                else:
                    assert isinstance(
                        grad_tensor, paddle.
                        Tensor), "The type of grad_tensor must be paddle.Tensor"
259 260 261 262
                assert grad_tensor.shape == self.shape, \
                    "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape)

263
            if core._in_eager_mode():
264 265 266 267
                if grad_tensor is None:
                    grad_tensor = []
                else:
                    grad_tensor = [grad_tensor]
K
kuizhiqing 已提交
268
            if paddle.is_compiled_with_xpu() or paddle.is_compiled_with_npu():
269
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
270
                scaled_loss = scale_loss(self)
271
                if core._in_eager_mode():
272 273 274 275 276 277
                    core.eager.run_backward([scaled_loss], grad_tensor,
                                            retain_graph)
                else:
                    core.dygraph_run_backward([scaled_loss], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
278
            else:
279
                if core._in_eager_mode():
280 281 282 283 284
                    core.eager.run_backward([self], grad_tensor, retain_graph)
                else:
                    core.dygraph_run_backward([self], [grad_tensor],
                                              retain_graph,
                                              framework._dygraph_tracer())
C
chenjian 已提交
285
            record_event.end()
286 287
        else:
            raise ValueError(
T
tianshuo78520a 已提交
288
                "Variable.backward() is only available in DyGraph mode")
289 290

    @framework.dygraph_only
291 292
    @deprecated(
        since="2.1.0",
293 294
        level=1,
        reason="Please use tensor.grad, which returns the tensor value of the gradient."
295
    )
296 297
    def gradient(self):
        """
298 299 300 301
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

302
        Get the Gradient of Current Tensor.
303 304

        Returns:
305
            ndarray: Numpy value of the gradient of current Tensor
306 307 308 309

        Examples:
            .. code-block:: python

310
                import paddle
311

312 313 314
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
315
                print("grad of x: {}".format(x.gradient()))
316
                # [500.]
317 318

        """
319
        if core._in_eager_mode():
320
            if self.grad is None:
321 322 323 324 325 326
                return None
            # TODO(wanghuancoder) support SELECTED_ROWS
            return self.grad.numpy()
        else:
            if self._grad_ivar() is None:
                return None
327

328 329 330 331
            new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
            if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
                return (
                    np.array(new_ivar.value().get_selected_rows().get_tensor()),
332
                    np.array(new_ivar.value().get_selected_rows().rows()))
333 334
            else:
                return np.array(new_ivar.value().get_tensor())
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
                "Cannot register hook on a tensor that stop gradient.")

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):

        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
            elif isinstance(device, (core.CPUPlace, core.CUDAPlace,
                                     core.CUDAPinnedPlace, core.XPUPlace)):
                pass
            else:
                raise ValueError(
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace() or paddle.XPUPlace(), but the type of device is "
                    + type(device).__name__)

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
                blocking,
                bool), "blocking value error, must be the True, False or None"

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype
432 433
            if type(dtype) is str:
                dtype = framework.convert_np_dtype_to_dtype_(dtype)
434 435 436

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
437
                size_dtype = core.size_of_dtype(dtype)
438 439 440 441 442
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
                    (t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
443
                gpu_memory_available = core.gpu_memory_available()
444 445 446 447 448 449 450 451 452 453 454 455 456
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
457 458 459
                with paddle.fluid.framework._dygraph_place_guard(
                        place=t_used.place):
                    t_casted = t_used.cast(dtype=dtype)
460 461 462 463
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
464 465 466 467
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
468 469 470 471 472 473 474 475 476 477 478 479

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

480 481 482
    @property
    def grad(self):
        """
483
        .. warning::
C
chenjian 已提交
484
          This API will return the tensor value of the gradient. If you want
485 486 487 488 489 490 491 492 493 494 495
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
496

497 498 499 500 501 502 503
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
504 505 506 507
        msg = 'tensor.grad will return the tensor value of the gradient.' \
            ' This is an incompatible upgrade for tensor.grad API. ' \
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. ' \
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
508
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
509 510 511
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
512
        warnings.warn(warning_msg)
513
        return self._grad_ivar()
514

515 516 517 518 519 520
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

521 522
    def item(self, *args):
        """
C
chenjian 已提交
523
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a
524
        single-element Tensor.
525 526 527 528 529 530 531 532 533

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
C
chenjian 已提交
534

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
        return self._getitem_from_offset(*args).item()

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

584 585
    def __str__(self):
        """
586
        Convert a VarBase object to a readable string.
587

588
        Returns(str): A readable string.
589 590 591 592

        Examples:
            .. code-block:: python

593
                import paddle
594
                x = paddle.rand([2, 5])
595
                print(x)
C
chenjian 已提交
596

597 598 599
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
600
        """
601
        if core._in_eager_mode():
602 603
            from paddle.tensor.to_string import tensor_to_string
            return tensor_to_string(self)
604 605 606
        else:
            from paddle.tensor.to_string import to_string
            return to_string(self)
607

608 609 610 611 612 613 614 615 616 617 618
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
C
chenjian 已提交
619

620 621 622 623 624 625 626 627 628 629 630 631 632
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
633
        if core._in_eager_mode():
634
            new_varbase = core.eager.Tensor()
635 636
        else:
            new_varbase = core.VarBase()
637 638 639 640 641
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

642 643 644
    @property
    def block(self):
        return framework.default_main_program().global_block()
645

646 647 648
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
649 650 651 652 653 654 655
        if core._in_eager_mode():
            assert self._is_initialized(), "tensor not initialized"
            return bool(np.all(self.numpy() > 0))
        else:
            tensor = self.value().get_tensor()
            assert tensor._is_initialized(), "tensor not initialized"
            return bool(np.all(tensor.__array__() > 0))
656 657 658 659

    def __bool__(self):
        return self.__nonzero__()

660
    def __array__(self, dtype=None):
661 662
        """
        Returns a numpy array shows the value of current Tensor.
C
chenjian 已提交
663

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
        array = self.numpy()
        if dtype:
            array = array.astype(dtype)
        return array
685

W
WeiXin 已提交
686
    def contain_tensor(item):
687
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
688 689 690 691 692 693 694 695 696
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
                if isinstance(slice_item.start, Variable)  \
                    or isinstance(slice_item.stop, Variable) \
                        or isinstance(slice_item.step, Variable):
                    return True
            else:
W
WeiXin 已提交
697 698 699
                if isinstance(
                        slice_item,
                    (Variable, np.ndarray)) and Variable.dtype != paddle.bool:
W
WeiXin 已提交
700 701 702
                    return True
        return False

703
    def __getitem__(self, item):
W
WeiXin 已提交
704 705 706 707 708 709
        def is_list_tuple(index, contain_type):
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
710 711 712
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
713
                return True
714

W
WeiXin 已提交
715 716 717 718 719 720 721 722
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
723 724 725 726 727 728 729 730
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
731
    def __setitem__(self, item, value):
Z
zyfncg 已提交
732 733 734
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
735

Z
zyfncg 已提交
736 737 738 739 740 741 742 743
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
Z
zyfncg 已提交
766 767
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
768 769 770
            return _setitem_impl_(self, item, value)

        else:
W
wanghuancoder 已提交
771 772 773 774 775
            if core._in_eager_mode():
                return self.__setitem_eager_tensor__(item, value)
            else:
                # Call c++ func __setitem_varbase__ to speedup.
                return self.__setitem_varbase__(item, value)
W
WeiXin 已提交
776

777 778
    @framework.dygraph_only
    def _grad_ivar(self):
779 780 781 782
        if self.grad is not None:
            if self.grad._is_initialized():
                return self.grad
        return None
783

784 785 786 787 788 789 790 791 792 793
    @framework.dygraph_only
    def _set_grad_ivar(self, value):
        if isinstance(self, EagerParamBase):
            self.grad = value
        else:
            raise TypeError(
                "_set_grad_ivar is only supported for Parameter Tensor")

    @framework.dygraph_only
    def clone(self):
H
hong 已提交
794
        return _C_ops.assign(self)
795

796 797 798 799
    @framework.dygraph_only
    def value(self):
        return self

800 801 802
    if core._in_eager_mode() and not hasattr(core, "eager"):
        return

803 804
    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
805
        ("_to_static_var", _to_static_var), ("set_value", set_value),
806
        ("block", block), ("backward", backward), ("clear_grad", clear_grad),
807 808 809 810
        ("inplace_version", inplace_version), ("gradient", gradient),
        ("register_hook", register_hook), ("__str__", __str__),
        ("__repr__", __str__), ("__deepcopy__", __deepcopy__),
        ("__module__", "paddle"), ("__array__", __array__),
W
WeiXin 已提交
811
        ("__getitem__", __getitem__), ("item", item),
812
        ("__setitem__", __setitem__), ("_to", _to)):
813
        if core._in_eager_mode():
814
            setattr(core.eager.Tensor, method_name, method)
L
Leo Chen 已提交
815
        else:
816 817 818
            setattr(core.VarBase, method_name, method)

    if core._in_eager_mode():
819 820 821 822
        setattr(core.eager.Tensor, "_grad_ivar", _grad_ivar)
        setattr(core.eager.Tensor, "_set_grad_ivar", _set_grad_ivar)
        setattr(core.eager.Tensor, "clone", clone)
        setattr(core.eager.Tensor, "value", value)
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
    else:
        setattr(core.VarBase, "__name__", "Tensor")
        setattr(core.VarBase, "grad", grad)

    global _already_patch_repr
    if not _already_patch_repr:
        # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
        # So, we need to overwrite it to a more readable one.
        # See details in https://github.com/pybind/pybind11/issues/2537.
        origin = getattr(core.VarDesc.VarType, "__repr__")

        def dtype_str(dtype):
            if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
                prefix = 'paddle.'
                return prefix + _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
            else:
                # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
                return origin(dtype)
L
Leo Chen 已提交
841

842 843
        setattr(core.VarDesc.VarType, "__repr__", dtype_str)
        _already_patch_repr = True
L
Leo Chen 已提交
844

845 846
    # patch math methods for varbase
    monkey_patch_math_varbase()