varbase_patch_methods.py 39.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import inspect
16
import numpy as np
17 18
import warnings
import weakref
19
import sys
20 21

import paddle
22
from .. import framework
23
from ..framework import convert_np_dtype_to_dtype_, _in_legacy_dygraph
24
from .. import core
25
from .. import unique_name
26 27 28 29 30 31 32 33 34
from ..framework import (
    Variable,
    Parameter,
    ParamBase,
    _getitem_impl_,
    _setitem_impl_,
    EagerParamBase,
    in_dygraph_mode,
)
35
from .base import switch_to_static_graph
36
from .math_op_patch import monkey_patch_math_varbase
37
from .parallel import scale_loss
L
Leo Chen 已提交
38
from paddle.fluid.data_feeder import convert_dtype, _PADDLE_DTYPE_2_NUMPY_DTYPE
39
import paddle.utils.deprecated as deprecated
C
chenjian 已提交
40
import paddle.profiler as profiler
41
from paddle.profiler.utils import in_profiler_mode
42
from paddle import _C_ops, _legacy_C_ops
43
from paddle.device import get_all_custom_device_type
44
from paddle.fluid.framework import _global_flags
45

46 47
_grad_scalar = None

48

49
class TensorHookRemoveHelper:
50 51
    """
    A helper class that for removing Tensor gradient's hook.
52
    NOTE(wuweilong):the operation weakref.ref(tensor) will cause some unexpected errors in eager mode.
53 54 55
    """

    def __init__(self, tensor, hook_id):
56 57 58
        self._tensor = (
            tensor if framework._in_eager_mode_ else weakref.ref(tensor)
        )
59 60 61 62 63 64 65 66 67
        self._hook_id = hook_id

    def remove(self):
        """
        Remove reference Tensor's hook.

        Returns:
            bool: Return True if removed successfully
        """
J
Jiabin Yang 已提交
68
        tensor = self._tensor if framework._in_eager_mode_ else self._tensor()
69 70 71 72 73 74 75
        if tensor is not None:
            res = tensor._remove_grad_hook(self._hook_id)
            if res is True:
                return True
            else:
                warnings.warn(
                    "The backward hook (ID: %d) of Tensor `%s` you want to remove does not exist or has been removed."
76 77 78
                    % (self._hook_id, tensor.name),
                    RuntimeWarning,
                )
79 80 81
        return False


82 83 84
_already_patch_repr = False


85
def monkey_patch_varbase():
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    @switch_to_static_graph
    def _to_static_var(self, to_parameter=False, **kwargs):
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**

        Transform a VarBase into static Variable with same attributes. It's a low level interface used
        in dy2static and shall not be called directly.

        Args:
            to_parameter (bool): It takes effect only if the input a VarBase. If set True,
                                 the VarBase will be converted into framework.Parameters. Otherwise, it will
                                 be converted into framework.Variable. Default False.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                import numpy as np

                data = np.ones([3, 1024], dtype='float32')
                with fluid.dygraph.guard():
                    var_base = to_variable(data)
                    static_var = var_base._to_static_var()

        """
113

114
        # Note: getattr(self, attr, None) will call x.grad=x.gradient(), but gradient() only available in dygraph.
115
        # It will fail. So, for propery that different between dynamic and static graph, should not getattr(self, attr, None).
116
        attr_not_need_keys = ['grad', 'T', 'place', '_place_str']
117
        param_keys = ['stop_gradient', 'trainable']
J
Jiabin Yang 已提交
118
        if isinstance(self, (ParamBase, EagerParamBase)):
119
            attr_kwargs = self.__dict__.copy()
120 121
            for key in param_keys:
                attr_kwargs[key] = getattr(self, key)
122
        else:
123 124
            attr_names = []
            for name in dir(self):
125
                if name not in attr_not_need_keys:
126 127 128
                    if not inspect.ismethod(
                        getattr(self, name)
                    ) and not name.startswith('_'):
129
                        attr_names.append(name)
130 131 132 133 134 135
            attr_kwargs = {name: getattr(self, name) for name in attr_names}

        attr_keys = ['block', 'shape', 'dtype', 'type', 'name', 'persistable']
        for attr in attr_keys:
            attr_kwargs[attr] = getattr(self, attr, None)

136 137 138 139
        # If specify block, use it instead of self.block
        if 'block' in kwargs:
            attr_kwargs['block'] = kwargs['block']

140 141
        attr_kwargs.update(kwargs)

J
Jiabin Yang 已提交
142
        if to_parameter or isinstance(self, (ParamBase, EagerParamBase)):
143
            del attr_kwargs['persistable']
144 145
            # NOTE(Aurelius84): All parameters should be placed into global block.
            attr_kwargs['block'] = attr_kwargs['block'].program.global_block()
146 147 148 149 150
            static_var = Parameter(**attr_kwargs)
        else:
            static_var = Variable(**attr_kwargs)
        return static_var

151 152 153 154 155
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
156
            **This API is ONLY available in Dygraph mode**
157 158 159 160 161 162 163 164 165 166 167

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
168
                from paddle.nn import Linear
169 170
                import numpy as np

171
                data = np.ones([3, 1024], dtype='float32')
172
                with fluid.dygraph.guard():
173
                    linear = Linear(1024, 4)
174
                    t = to_variable(data)
175
                    linear(t)  # call with default weight
176
                    custom_weight = np.random.randn(1024, 4).astype("float32")
177 178
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
179 180

        """
J
Jiabin Yang 已提交
181
        if framework._in_eager_mode_:
182
            base_tensor = core.eager.Tensor
183 184
        else:
            base_tensor = core.VarBase
185 186 187
        assert isinstance(
            value, (np.ndarray, base_tensor, dict, str)
        ), "Variable set_value function, arguments type only support Variable, numpy, VarBase, dict, string."
S
Steffy-zxf 已提交
188 189 190 191 192

        if isinstance(value, (dict, str)):
            assert len(self) == len(
                value
            ), "Variable length not match, Variable [ {} ] need tensor with length {} but load set tensor with length {}".format(
193 194
                self.name, len(self), len(value)
            )
S
Steffy-zxf 已提交
195 196 197 198 199
            if isinstance(value, dict):
                self.value().set_vocab(value)
            else:
                self.value().set_string_list(value)
        else:
200 201 202 203 204
            assert self.shape == list(
                value.shape
            ), "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                self.name, self.shape, value.shape
            )
C
crystal 已提交
205 206 207 208 209

            if isinstance(value, base_tensor):
                dtype = value.dtype
            else:
                dtype = convert_np_dtype_to_dtype_(value.dtype)
210

211 212 213 214 215
            assert (
                self.dtype == dtype
            ), "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                self.name, self.dtype, dtype
            )
216

217
            # NOTE(wuweilong): self could be VarBase or Tensor, the subsequent behavior are defined in different files
218
            # if self is VarBase, method value() return Variable that bindded in imperative.cc, get_tensor() bindded in pybind.cc
219
            # if self is Tensor, method value() return self that defined in this file, get_tensor() defined in eager_method.cc
220
            # this Interface behavior will be unifed in the future.
221 222 223
            self.value().get_tensor().set(
                value, framework._current_expected_place()
            )
224 225

    @framework.dygraph_only
226
    def backward(self, grad_tensor=None, retain_graph=False):
227
        """
228
        Run backward of current Graph which starts from current Tensor.
229

230 231 232 233
        The new gradient will accumulat on previous gradient.

        You can clear gradient by ``Tensor.clear_grad()`` .

234
        Args:
C
chenjian 已提交
235 236
            grad_tensor(Tensor, optional): initial gradient values of the current Tensor. If `grad_tensor` is None,
            the initial gradient values of the current Tensor would be Tensor filled with 1.0;
237 238 239
            if `grad_tensor` is not None, it must have the same length as the current Tensor.
            Teh default value is None.

240
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
241 242 243
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
244 245 246 247 248 249
        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

250
                import paddle
251 252 253 254 255 256 257 258 259 260 261 262 263 264
                x = paddle.to_tensor(5., stop_gradient=False)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward()
                    print("{}: {}".format(i, x.grad))
                # 0: [500.]
                # 1: [1000.]
                # 2: [1500.]
                # 3: [2000.]
                # 4: [2500.]

                x.clear_grad()
                print("{}".format(x.grad))
                # 0.
265

266 267 268 269 270 271 272 273 274 275 276
                grad_tensor=paddle.to_tensor(2.)
                for i in range(5):
                    y = paddle.pow(x, 4.0)
                    y.backward(grad_tensor)
                    print("{}: {}".format(i, x.grad))
                # 0: [1000.]
                # 1: [2000.]
                # 2: [3000.]
                # 3: [4000.]
                # 4: [5000.]

277
        """
J
Jiabin Yang 已提交
278
        if framework._non_static_mode():
279 280
            if in_profiler_mode():
                record_event = profiler.RecordEvent(
281 282
                    "Gradient Backward", profiler.TracerEventType.Backward
                )
283
                record_event.begin()
284
            if grad_tensor is not None:
J
Jiabin Yang 已提交
285
                if framework._in_eager_mode_:
286
                    assert isinstance(
287 288
                        grad_tensor, core.eager.Tensor
                    ), "The type of grad_tensor must be paddle.Tensor"
289 290
                else:
                    assert isinstance(
291 292
                        grad_tensor, paddle.Tensor
                    ), "The type of grad_tensor must be paddle.Tensor"
293 294 295 296 297
                assert (
                    grad_tensor.shape == self.shape
                ), "Tensor shape not match, Tensor of grad_tensor [ {} ] with shape {} mismatch Tensor [ {} ] with shape {}".format(
                    grad_tensor.name, grad_tensor.shape, self.name, self.shape
                )
298

J
Jiabin Yang 已提交
299
            if framework._in_eager_mode_:
300 301 302 303
                if grad_tensor is None:
                    grad_tensor = []
                else:
                    grad_tensor = [grad_tensor]
304 305 306
            if _grad_scalar:
                # When using amp with Fleet DistributedStrategy, we do loss scaling implicitly.
                self = _grad_scalar.scale(self)
307 308 309 310 311
            if (
                paddle.is_compiled_with_xpu()
                or paddle.is_compiled_with_npu()
                or paddle.is_compiled_with_mlu()
            ):
312
                # TODO(liuyuhui): Currently only for xpu. Will be removed in the future.
313
                scaled_loss = scale_loss(self)
J
Jiabin Yang 已提交
314
                if framework._in_eager_mode_:
315 316 317
                    core.eager.run_backward(
                        [scaled_loss], grad_tensor, retain_graph
                    )
318
                else:
319 320 321 322 323 324
                    core.dygraph_run_backward(
                        [scaled_loss],
                        [grad_tensor],
                        retain_graph,
                        framework._dygraph_tracer(),
                    )
325
            else:
J
Jiabin Yang 已提交
326
                if framework._in_eager_mode_:
327 328
                    core.eager.run_backward([self], grad_tensor, retain_graph)
                else:
329 330 331 332 333 334
                    core.dygraph_run_backward(
                        [self],
                        [grad_tensor],
                        retain_graph,
                        framework._dygraph_tracer(),
                    )
335 336
            if in_profiler_mode():
                record_event.end()
337 338
        else:
            raise ValueError(
339 340
                "Variable.backward() is only available in DyGraph mode"
            )
341 342

    @framework.dygraph_only
343 344
    @deprecated(
        since="2.1.0",
345
        level=1,
346
        reason="Please use tensor.grad, which returns the tensor value of the gradient.",
347
    )
348 349
    def gradient(self):
        """
350 351 352 353
        .. warning::
          This API will be deprecated in the future, it is recommended to use
          :code:`x.grad` which returns the tensor value of the gradient.

354
        Get the Gradient of Current Tensor.
355 356

        Returns:
357
            ndarray: Numpy value of the gradient of current Tensor
358 359 360 361

        Examples:
            .. code-block:: python

362
                import paddle
363

364 365 366
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
367
                print("grad of x: {}".format(x.gradient()))
368
                # [500.]
369 370

        """
J
Jiabin Yang 已提交
371
        if framework._in_eager_mode_:
372
            if self.grad is None:
373
                return None
374 375
            if self.grad.is_selected_rows():
                return (np.array(self.grad.numpy()), np.array(self.grad.rows()))
376 377 378 379
            return self.grad.numpy()
        else:
            if self._grad_ivar() is None:
                return None
380

381 382
            new_ivar = self._grad_ivar()
            # TODO(qili93): temporary for ascned npu performance to be removed along with npu_identity op
383
            if (
384
                _global_flags()['FLAGS_npu_storage_format']
385 386
                and 'npu' in get_all_custom_device_type()
            ):
387 388
                new_ivar = paddle.incubate._npu_identity(x=new_ivar, format=-1)
            new_ivar = new_ivar._copy_to(core.CPUPlace(), True)
389
            if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
390 391 392 393
                return (
                    np.array(new_ivar.value().get_selected_rows().get_tensor()),
                    np.array(new_ivar.value().get_selected_rows().rows()),
                )
394 395
            else:
                return np.array(new_ivar.value().get_tensor())
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
    @framework.dygraph_only
    def register_hook(self, hook):
        """
        Registers a backward hook for current Tensor.

        The hook will be called every time the gradient Tensor of current Tensor is computed.

        The hook should not modify the input gradient Tensor, but it can optionally return
        a new gradient Tensor which will be used in place of current Tensor's gradient.

        The hook should have the following signature:

            hook(grad) -> Tensor or None

        Args:
            hook(function): A backward hook to be registered for Tensor.grad

        Returns:
            TensorHookRemoveHelper: A helper object that can be used to remove the registered hook by calling `remove()` method.

        Examples:
            .. code-block:: python

                import paddle

                # hook function return None
                def print_hook_fn(grad):
                    print(grad)

                # hook function return Tensor
                def double_hook_fn(grad):
                    grad = grad * 2
                    return grad

                x = paddle.to_tensor([0., 1., 2., 3.], stop_gradient=False)
                y = paddle.to_tensor([4., 5., 6., 7.], stop_gradient=False)
                z = paddle.to_tensor([1., 2., 3., 4.])

                # one Tensor can register multiple hooks
                h = x.register_hook(print_hook_fn)
                x.register_hook(double_hook_fn)

                w = x + y
                # register hook by lambda function
                w.register_hook(lambda grad: grad * 2)

                o = z.matmul(w)
                o.backward()
                # print_hook_fn print content in backward
                # Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [2., 4., 6., 8.])

                print("w.grad:", w.grad) # w.grad: [1. 2. 3. 4.]
                print("x.grad:", x.grad) # x.grad: [ 4.  8. 12. 16.]
                print("y.grad:", y.grad) # y.grad: [2. 4. 6. 8.]

                # remove hook
                h.remove()
        """
        if self.stop_gradient is True:
            raise RuntimeError(
458 459
                "Cannot register hook on a tensor that stop gradient."
            )
460 461 462 463 464

        hook_id = self._register_grad_hook(hook)
        helper = TensorHookRemoveHelper(self, hook_id)
        return helper

465 466 467 468 469 470 471 472 473
    @framework.dygraph_only
    def _to(self, device=None, dtype=None, blocking=None):

        if device is None and dtype is None and blocking is None:
            return self

        if device is not None:
            if isinstance(device, str):
                device = paddle.device._convert_to_place(device)
474
            elif isinstance(
475 476 477 478 479 480 481 482 483
                device,
                (
                    core.CPUPlace,
                    core.CUDAPlace,
                    core.CUDAPinnedPlace,
                    core.XPUPlace,
                    core.CustomPlace,
                ),
            ):
484 485 486
                pass
            else:
                raise ValueError(
487
                    "device value error, must be str, paddle.CPUPlace(), paddle.CUDAPlace(), paddle.CUDAPinnedPlace(), paddle.XPUPlace() or paddle.CustomPlace(), but the type of device is "
488 489
                    + type(device).__name__
                )
490 491 492 493 494

        if blocking is None:
            blocking = True
        else:
            assert isinstance(
495 496
                blocking, bool
            ), "blocking value error, must be the True, False or None"
497 498 499 500 501 502

        def transform(t, device, dtype, blocking):
            if device is None:
                device = t.place
            if dtype is None:
                dtype = t.dtype
503 504
            if type(dtype) is str:
                dtype = framework.convert_np_dtype_to_dtype_(dtype)
505 506 507

            # 1. gpu place need to determine whether the memory is sufficient for allocation.
            if t.place.is_gpu_place():
508
                size_dtype = core.size_of_dtype(dtype)
509 510 511 512
                # Note(weilong wu): Paddle GPU minimum memory allocation unit is 256 bytes,
                # waiting_alloc_memory will compute the memory space occupied by 't'.
                # Coefficient 1.2 is used to avoid OOM that may occur in this critical state when the memory is just enough.
                waiting_alloc_memory = (
513 514
                    ((t._numel() * size_dtype) / 256 + 1) * 256 * 1.2
                )
515
                gpu_memory_available = core.gpu_memory_available()
516 517 518 519 520 521 522 523 524 525 526 527 528
                if gpu_memory_available < waiting_alloc_memory:
                    # Copy Tensor to cpu
                    t_used = t._copy_to(paddle.CPUPlace(), blocking)
                    # Release memory of t
                    t._clear()
                else:
                    # Tensor still in GPU
                    t_used = t
            else:
                t_used = t

            # 2. cast Tensor to dtype
            if dtype is not None and dtype != t_used.dtype:
529
                with paddle.fluid.framework._dygraph_place_guard(
530 531
                    place=t_used.place
                ):
532
                    t_casted = t_used.cast(dtype=dtype)
533 534 535 536
            else:
                t_casted = t_used

            # 3. Copy casted Tensor(in CPU or GPU) to device
537 538 539 540
            if device is not None and not t_casted.place._equals(device):
                new_t = t_casted._copy_to(device, blocking)
            else:
                new_t = t_casted
541 542 543 544 545 546 547 548 549 550 551 552

            # 4. Share Tensor to origin Tensor
            dst_tensor = t.value().get_tensor()
            src_tensor = new_t.value().get_tensor()
            dst_tensor._share_data_with(src_tensor)

            return t

        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", category=UserWarning)
            return transform(self, device, dtype, blocking)

553 554 555
    @property
    def grad(self):
        """
556
        .. warning::
C
chenjian 已提交
557
          This API will return the tensor value of the gradient. If you want
558 559 560 561 562 563 564 565 566 567 568
          to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`.

        Get the Gradient of Current Tensor.

        Returns:
            Tensor: the gradient of current Tensor

        Examples:
            .. code-block:: python

                import paddle
569

570 571 572 573 574 575 576
                x = paddle.to_tensor(5., stop_gradient=False)
                y = paddle.pow(x, 4.0)
                y.backward()
                print("grad of x: {}".format(x.grad))
                # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=False, [500.])

        """
577 578 579 580
        msg = (
            'tensor.grad will return the tensor value of the gradient.'
            ' This is an incompatible upgrade for tensor.grad API. '
            ' It\'s return type changes from numpy.ndarray in version 2.0 to paddle.Tensor in version 2.1.0. '
581
            ' If you want to get the numpy value of the gradient, you can use :code:`x.grad.numpy()`'
582
        )
583
        warning_msg = "\033[93m\nWarning:\n%s \033[0m" % (msg)
584 585 586
        # ensure ANSI escape sequences print correctly in cmd and powershell
        if sys.platform.lower() == 'win32':
            warning_msg = "\nWarning:\n%s " % (msg)
587
        warnings.warn(warning_msg)
588
        return self._grad_ivar()
589

590 591 592 593 594 595
    def clear_grad(self):
        """
        The alias of clear_gradient().
        """
        self.clear_gradient()

596 597
    def item(self, *args):
        """
C
chenjian 已提交
598
        Convert element at specific position in Tensor into Python scalars. If the position is not specified, the Tensor must be a
599
        single-element Tensor.
600 601 602 603 604 605 606 607 608

        Args:
            *args(int): The input coordinates. If it's single int, the data in the corresponding order of flattened Tensor will be returned.
                Default: None, and it must be in the case where Tensor has only one element.

        Returns(Python scalar): A Python scalar, whose dtype is corresponds to the dtype of Tensor.

        Raises:
            ValueError: If the Tensor has more than one element, there must be coordinates.
C
chenjian 已提交
609

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
        Examples:
            .. code-block:: python

                import paddle

                x = paddle.to_tensor(1)
                print(x.item())             #1
                print(type(x.item()))       #<class 'int'>

                x = paddle.to_tensor(1.0)
                print(x.item())             #1.0
                print(type(x.item()))       #<class 'float'>

                x = paddle.to_tensor(True)
                print(x.item())             #True
                print(type(x.item()))       #<class 'bool'>

                x = paddle.to_tensor(1+1j)
                print(x.item())             #(1+1j)
                print(type(x.item()))       #<class 'complex'>

                x = paddle.to_tensor([[1.1, 2.2, 3.3]])
                print(x.item(2))            #3.3
                print(x.item(0, 2))         #3.3

        """
        return self._getitem_from_offset(*args).item()

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
    @property
    def inplace_version(self):
        """
        The inplace version of current Tensor.
        The version number is incremented whenever the current Tensor is modified through an inplace operation.

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle
            var = paddle.ones(shape=[4, 2, 3], dtype="float32")
            print(var.inplace_version)  # 0

            var[1] = 2.2
            print(var.inplace_version)  # 1

        """
        return self._inplace_version()

659 660
    def __str__(self):
        """
661
        Convert a VarBase object to a readable string.
662

663
        Returns(str): A readable string.
664 665 666 667

        Examples:
            .. code-block:: python

668
                import paddle
669
                x = paddle.rand([2, 5])
670
                print(x)
C
chenjian 已提交
671

672 673 674
                # Tensor(shape=[2, 5], dtype=float32, place=CPUPlace,
                #        [[0.30574632, 0.55739117, 0.30902600, 0.39413780, 0.44830436],
                #         [0.79010487, 0.53972793, 0.09495186, 0.44267157, 0.72112119]])
675
        """
J
Jiabin Yang 已提交
676
        if framework._in_eager_mode_:
677
            from paddle.tensor.to_string import tensor_to_string
678

679
            return tensor_to_string(self)
680 681
        else:
            from paddle.tensor.to_string import to_string
682

683
            return to_string(self)
684

685 686 687 688 689 690 691 692 693 694 695
    def __deepcopy__(self, memo):
        """
        Deep copy Tensor, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                x = paddle.to_tensor(2.)
                y = copy.deepcopy(x)
C
chenjian 已提交
696

697 698 699 700 701 702 703 704 705 706 707 708 709
                print(x)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

                print(y)
                # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True,
                #        [2.])

        """
        if not self.is_leaf:
            raise RuntimeError(
                "Only Leaf Tensor support the deepcopy at the moment, non-Leaf Tensors contains graph information that does't support deepcopy"
            )
J
Jiabin Yang 已提交
710
        if framework._in_eager_mode_:
711
            new_varbase = core.eager.Tensor()
712 713
        else:
            new_varbase = core.VarBase()
714 715 716 717 718
        new_varbase.name = self.name + unique_name.generate("_deepcopy")
        memo[id(self)] = new_varbase
        new_varbase.copy_(self, True)
        return new_varbase

719 720 721
    @property
    def block(self):
        return framework.default_main_program().global_block()
722

723 724
    def __nonzero__(self):
        numel = np.prod(self.shape)
725 726 727
        assert (
            numel == 1
        ), "When Variable is used as the condition of if/while , Variable can only contain one element."
J
Jiabin Yang 已提交
728
        if framework._in_eager_mode_:
729 730 731 732 733 734
            assert self._is_initialized(), "tensor not initialized"
            return bool(np.all(self.numpy() > 0))
        else:
            tensor = self.value().get_tensor()
            assert tensor._is_initialized(), "tensor not initialized"
            return bool(np.all(tensor.__array__() > 0))
735 736 737 738

    def __bool__(self):
        return self.__nonzero__()

739
    def __array__(self, dtype=None):
740 741
        """
        Returns a numpy array shows the value of current Tensor.
C
chenjian 已提交
742

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        Returns:
            ndarray: The numpy value of current Tensor.

        Returns type:
            ndarray: dtype is same as current Tensor

        Examples:
            .. code-block:: python

                import paddle
                import numpy as np
                x = paddle.randn([2, 2])
                x_array = np.array(x)

                print(type(x_array))      #<class 'numpy.ndarray'>
                print(x_array.shape)      #(2, 2)
        """
        array = self.numpy()
        if dtype:
            array = array.astype(dtype)
        return array
764

W
WeiXin 已提交
765
    def contain_tensor(item):
766
        if not isinstance(item, (tuple, list)):
W
WeiXin 已提交
767 768 769 770
            item = [item]

        for slice_item in item:
            if isinstance(slice_item, slice):
771 772 773 774 775
                if (
                    isinstance(slice_item.start, Variable)
                    or isinstance(slice_item.stop, Variable)
                    or isinstance(slice_item.step, Variable)
                ):
W
WeiXin 已提交
776 777
                    return True
            else:
778 779 780 781
                if (
                    isinstance(slice_item, (Variable, np.ndarray))
                    and Variable.dtype != paddle.bool
                ):
W
WeiXin 已提交
782 783 784
                    return True
        return False

785
    def __getitem__(self, item):
W
WeiXin 已提交
786 787 788 789 790 791
        def is_list_tuple(index, contain_type):
            def _is_list_tuple(item):
                if isinstance(item, (tuple, list)):
                    for s in item:
                        if not _is_list_tuple(s):
                            return False
792 793 794
                else:
                    if type(item) != contain_type:
                        return False
W
WeiXin 已提交
795
                return True
796

W
WeiXin 已提交
797 798 799 800 801 802 803 804
            if not isinstance(index, (tuple, list)):
                return False
            for s in index:
                if not _is_list_tuple(s):
                    return False
            return True

        if contain_tensor(item) or is_list_tuple(item, int):
805 806 807 808 809 810 811 812
            # 1. Call _getitem_impl_ when item contains tensor.
            # Why not call a c++ function ? Because item can't be parsed when it contains tensor.
            return _getitem_impl_(self, item)

        else:
            # 2. Call c++ func getitem_index_not_tensor to speedup.
            return self._getitem_index_not_tensor(item)

W
WeiXin 已提交
813
    def __setitem__(self, item, value):
Z
zyfncg 已提交
814 815 816
        def contain_tensor_or_list(item):
            if not isinstance(item, tuple):
                item = [item]
W
WeiXin 已提交
817

Z
zyfncg 已提交
818 819 820 821 822 823 824 825
            for slice_item in item:
                if isinstance(slice_item, list):
                    return True
                elif isinstance(slice_item, Variable):
                    return True

            return False

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
        def is_combine_index(item):
            var_type = None
            item_type = None
            if isinstance(item, (tuple, list)):
                for slice_item in item:
                    if item_type is None:
                        item_type = type(slice_item)
                    else:
                        if type(slice_item) != item_type:
                            return True

                    if isinstance(slice_item, Variable):
                        if var_type is None:
                            var_type = slice_item.dtype
                        else:
                            if var_type != slice_item.dtype:
                                return True
                return False

            return False

        if contain_tensor_or_list(item) and not is_combine_index(item):
Z
zyfncg 已提交
848 849
            # To reuse code with static graph,
            # Call _setitem_impl_ when item contains tensor or list.
W
WeiXin 已提交
850 851 852
            return _setitem_impl_(self, item, value)

        else:
J
Jiabin Yang 已提交
853
            if framework._in_eager_mode_:
W
wanghuancoder 已提交
854 855 856 857
                return self.__setitem_eager_tensor__(item, value)
            else:
                # Call c++ func __setitem_varbase__ to speedup.
                return self.__setitem_varbase__(item, value)
W
WeiXin 已提交
858

859 860
    @framework.dygraph_only
    def _grad_ivar(self):
861 862 863 864
        if self.grad is not None:
            if self.grad._is_initialized():
                return self.grad
        return None
865

866 867 868 869
    @framework.dygraph_only
    def _set_grad_ivar(self, value):
        if isinstance(self, EagerParamBase):
            self.grad = value
870
            self._unset_fake_empty()
871 872
        else:
            raise TypeError(
873 874
                "_set_grad_ivar is only supported for Parameter Tensor"
            )
875

876 877 878 879
    @framework.dygraph_only
    def value(self):
        return self

J
Jiabin Yang 已提交
880 881 882 883 884 885 886 887
    @framework.dygraph_only
    def _slice(self, begin_idx, end_idx):
        return core.eager.Tensor(self.get_tensor()._slice(begin_idx, end_idx))

    @framework.dygraph_only
    def _numel(self):
        return self.get_tensor()._numel()

B
Baibaifan 已提交
888 889 890 891
    @framework.dygraph_only
    def _clear_data(self):
        self.get_tensor()._clear()

892
    @framework.dygraph_only
893 894
    def _use_gpudnn(self, use_gpudnn=True):
        return self._tensor_use_gpudnn(use_gpudnn)
895

896 897
    @framework.dygraph_only
    def _uva(self, device_id=0):
W
Weilong Wu 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
        '''
        Returns self tensor with the UVA(unified virtual addressing).

        Args:
            device_id(int, optional): The destination GPU device id. Default: None, means current device.

        Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              x = paddle.to_tensor([1, 2, 3], place=paddle.CPUPlace())
              x._uva()
              print(x)
        '''
913 914
        self._tensor_uva(device_id)

J
Jiabin Yang 已提交
915 916 917 918 919 920 921 922 923 924 925
    @framework.dygraph_only
    def cpu(self):
        if self.place.is_cpu_place():
            return self
        else:
            res = self._copy_to(core.CPUPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

    @framework.dygraph_only
926
    def cuda(self, device_id=None, blocking=True):
927
        if device_id is None:
928 929 930 931 932 933 934 935 936
            res_place = framework._current_expected_place()
            if not isinstance(res_place, core.CUDAPlace):
                res_place = core.CUDAPlace(0)
        elif isinstance(device_id, int):
            res_place = core.CUDAPlace(device_id)
        else:
            raise ValueError("device_id must be int|None")

        if self.place._equals(res_place):
J
Jiabin Yang 已提交
937 938
            return self
        else:
939
            res = self._copy_to(res_place, True)
J
Jiabin Yang 已提交
940 941 942 943
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

W
wanghuancoder 已提交
944 945 946 947 948 949 950 951 952 953
    @framework.dygraph_only
    def pin_memory(self):
        if self.place.is_cuda_pinned_place():
            return self
        else:
            res = self._copy_to(core.CUDAPinnedPlace(), True)
            res.stop_gradient = self.stop_gradient
            res.persistable = self.persistable
            return res

954 955
    @framework.dygraph_only
    def values(self):
Z
zhangkaihuo 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Get the values of current SparseTensor(COO or CSR).

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                    values = [1, 2, 3, 4, 5]
                    dense_shape = [3, 4]
973
                    sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int32'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
Z
zhangkaihuo 已提交
974 975 976
                    print(sparse_x.values())
                    #[1, 2, 3, 4, 5]
        """
977
        return _C_ops.sparse_values(self)
978 979 980

    @framework.dygraph_only
    def to_dense(self):
Z
zhangkaihuo 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current SparseTensor(COO or CSR) to DenseTensor.

        Returns:
            Tensor: A DenseTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
                    values = [1, 2, 3, 4, 5]
                    dense_shape = [3, 4]
998
                    sparse_x = paddle.sparse.sparse_coo_tensor(paddle.to_tensor(indices, dtype='int64'), paddle.to_tensor(values, dtype='float32'), shape=dense_shape)
Z
zhangkaihuo 已提交
999 1000 1001 1002 1003 1004
                    dense_x = sparse_x.to_dense()
                    #[[0., 1., 0., 2.],
                    # [0., 0., 3., 0.],
                    # [4., 5., 0., 0.]]
        """

1005
        return _C_ops.sparse_to_dense(self)
1006 1007 1008

    @framework.dygraph_only
    def to_sparse_coo(self, sparse_dim):
Z
zhangkaihuo 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        """
        **Notes**:
            **This API is ONLY available in Dygraph mode**
        Convert the current DenseTensor to SparseTensor in COO format.

        Returns:
            Tensor: A SparseCooTensor

        Examples:
            .. code-block:: python

                import paddle
                from paddle.fluid.framework import _test_eager_guard
                with _test_eager_guard():
                    dense_x = [[0, 1, 0, 2], [0, 0, 3, 4]]
                    dense_x = paddle.to_tensor(dense_x, dtype='float32')
                    sparse_x = dense_x.to_sparse_coo(sparse_dim=2)
                    #indices=[[0, 0, 1, 1],
                    #         [1, 3, 2, 3]],
                    #values=[1., 2., 3., 4.]
        """

1031
        return _C_ops.sparse_to_sparse_coo(self, sparse_dim)
1032

1033 1034 1035
    def __hash__(self):
        return hash(id(self))

J
Jiabin Yang 已提交
1036
    if framework._in_eager_mode_ and not hasattr(core, "eager"):
1037 1038
        return

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    for method_name, method in (
        ("__bool__", __bool__),
        ("__nonzero__", __nonzero__),
        ("_to_static_var", _to_static_var),
        ("set_value", set_value),
        ("block", block),
        ("backward", backward),
        ("clear_grad", clear_grad),
        ("inplace_version", inplace_version),
        ("gradient", gradient),
        ("register_hook", register_hook),
        ("__str__", __str__),
        ("__repr__", __str__),
        ("__deepcopy__", __deepcopy__),
        ("__module__", "paddle"),
        ("__array__", __array__),
        ("__getitem__", __getitem__),
        ("item", item),
        ("__setitem__", __setitem__),
        ("_to", _to),
        ("values", values),
        ("to_dense", to_dense),
        ("to_sparse_coo", to_sparse_coo),
    ):
J
Jiabin Yang 已提交
1063
        if framework._in_eager_mode_:
1064
            setattr(core.eager.Tensor, method_name, method)
L
Leo Chen 已提交
1065
        else:
1066 1067
            setattr(core.VarBase, method_name, method)

J
Jiabin Yang 已提交
1068
    if framework._in_eager_mode_:
1069 1070 1071
        setattr(core.eager.Tensor, "_grad_ivar", _grad_ivar)
        setattr(core.eager.Tensor, "_set_grad_ivar", _set_grad_ivar)
        setattr(core.eager.Tensor, "value", value)
J
Jiabin Yang 已提交
1072 1073
        setattr(core.eager.Tensor, "cpu", cpu)
        setattr(core.eager.Tensor, "cuda", cuda)
W
wanghuancoder 已提交
1074
        setattr(core.eager.Tensor, "pin_memory", pin_memory)
J
Jiabin Yang 已提交
1075 1076
        setattr(core.eager.Tensor, "_slice", _slice)
        setattr(core.eager.Tensor, "_numel", _numel)
1077
        setattr(core.eager.Tensor, "_uva", _uva)
B
Baibaifan 已提交
1078
        setattr(core.eager.Tensor, "_clear_data", _clear_data)
1079
        setattr(core.eager.Tensor, "__hash__", __hash__)
1080
        setattr(core.eager.Tensor, "_use_gpudnn", _use_gpudnn)
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    else:
        setattr(core.VarBase, "__name__", "Tensor")
        setattr(core.VarBase, "grad", grad)

    global _already_patch_repr
    if not _already_patch_repr:
        # NOTE(zhiqiu): pybind11 will set a default __str__ method of enum class.
        # So, we need to overwrite it to a more readable one.
        # See details in https://github.com/pybind/pybind11/issues/2537.
        origin = getattr(core.VarDesc.VarType, "__repr__")

        def dtype_str(dtype):
            if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
1094 1095 1096
                numpy_dtype = _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
                if numpy_dtype == 'uint16':
                    numpy_dtype = 'bfloat16'
1097
                prefix = 'paddle.'
1098
                return prefix + numpy_dtype
1099 1100 1101
            else:
                # for example, paddle.fluid.core.VarDesc.VarType.LOD_TENSOR
                return origin(dtype)
L
Leo Chen 已提交
1102

1103 1104
        setattr(core.VarDesc.VarType, "__repr__", dtype_str)
        _already_patch_repr = True
L
Leo Chen 已提交
1105

1106 1107
    # patch math methods for varbase
    monkey_patch_math_varbase()