analysis_predictor.h 17.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#pragma once
16 17
#include <algorithm>
#include <map>
N
nhzlx 已提交
18
#include <memory>
19 20
#include <string>
#include <vector>
21
#include "paddle/phi/common/data_type.h"
22
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
23 24
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#endif
25
#include "paddle/fluid/framework/naive_executor.h"
26
#include "paddle/fluid/framework/op_compatible_info.h"
Y
Yan Chunwei 已提交
27 28
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
Y
Yan Chunwei 已提交
29
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
N
nhzlx 已提交
30
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
31
#include "paddle/fluid/inference/api/paddle_inference_api.h"
32
#include "paddle/fluid/inference/api/resource_manager.h"
W
Wilber 已提交
33
#include "paddle/fluid/platform/device/gpu/gpu_types.h"
34
#include "paddle/fluid/platform/float16.h"
35
#include "paddle/fluid/string/printf.h"
36 37 38 39
#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest.h>
#include <gtest/gtest_prod.h>
#endif
40

41 42
namespace paddle_infer {
using float16 = paddle::platform::float16;
W
Wilber 已提交
43 44 45
namespace experimental {
class InternalUtils;
};
46
}  // namespace paddle_infer
47 48 49 50 51 52 53 54 55 56 57
///
/// \file analysis_predictor.h
///
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
/// predictor that includes many optimizations
///
/// \author paddle-infer@baidu.com
/// \date 2020-01-01
/// \since 1.7.0
///

Y
Yan Chunwei 已提交
58 59
namespace paddle {

60
using framework::NaiveExecutor;
61 62 63
using framework::proto::ProgramDesc;
using inference::analysis::Analyzer;
using inference::analysis::Argument;
Y
Yan Chunwei 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
///
/// \class AnalysisPredictor
///
/// \brief The analysis predictor is based on the original native predictor with
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
///
/// The predictor has the following typical uses:
///
/// Get predictor
/// \code{cpp}
///   auto predictor = CreatePaddlePredictor(config);
/// \endcode
///
/// Get input or output names
/// \code{cpp}
///   auto input_names = predictor->GetInputNames();
///   auto output_names = predictor->GetOutputNames();
/// \endcode
///
/// Get input or output tensors
/// \code{cpp}
///   auto input_t = predictor->GetInputTensor(input_names[0]);
///   auto output_t = predictor->GetOutputTensor(output_names[0]);
/// \endcode
///
/// Run predictor
/// \code{cpp}
///   predictor->ZeroCopyRun();
/// \endcode
///
95
class AnalysisPredictor : public PaddlePredictor {
Y
Yan Chunwei 已提交
96
 public:
97 98 99 100 101
  ///
  /// \brief Construct a new Analysis Predictor object
  ///
  /// \param[in] AnalysisConfig config
  ///
102
  explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
103 104 105
    if (config_.shape_range_info_collected()) {
      config_.SwitchIrOptim(false);
    }
106 107
    auto trt_identifier = config_.trt_engine_memory_sharing_identifier_;
    if (trt_identifier > 0) {
Y
Yuanle Liu 已提交
108 109 110
      // NOTE(liuyuanle): For convenience, we set the id of the predictor to
      // negative sharing_identifier directly. In the future, this may affect
      // the meaning of negative predictor id.
111
      predictor_id_ = -trt_identifier;
Y
Yuanle Liu 已提交
112 113 114 115
      LOG(WARNING)
          << "Since the engine context memory of multiple predictors "
             "is enabled in Paddle-TRT, we set the id of current predictor to "
             "negative sharing_identifier you specified.";
116 117 118
    } else {
      predictor_id_ = inference::GetUniqueId();
    }
119
  }
120 121 122
  ///
  /// \brief Destroy the Analysis Predictor object
  ///
F
flame 已提交
123
  ~AnalysisPredictor();
Y
Yan Chunwei 已提交
124

125 126 127 128 129 130 131 132 133 134 135 136
  ///
  /// \brief Initialize predictor
  ///
  /// Initializing predictor mainly includes the following tasks:
  /// preparing scope, creating executor, preparing program, initializing the
  /// variables required by the executor, getting the feed_target_names and
  /// fetch_target_names, etc.
  ///
  /// \param[in] parent_scope parent scope
  /// \param[in] program program
  /// \return Whether the init function executed successfully
  ///
137 138
  bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
            const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
Y
Yan Chunwei 已提交
139

140 141 142 143 144 145 146 147
  ///
  /// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
  ///
  /// \param[in] inputs input tensors
  /// \param[out] output_data output tensors
  /// \param[in] batch_size data's batch size
  /// \return Whether the function executed successfully
  ///
148 149 150 151
  bool Run(const std::vector<PaddleTensor> &inputs,
           std::vector<PaddleTensor> *output_data,
           int batch_size = -1) override;

152 153 154 155 156
  ///
  /// \brief Get the input names
  ///
  /// \return input names
  ///
157
  std::vector<std::string> GetInputNames() override;
158 159 160 161 162
  ///
  /// \brief Get the output names
  ///
  /// \return output names
  ///
163
  std::vector<std::string> GetOutputNames() override;
N
nhzlx 已提交
164

165 166 167 168 169 170
  ///
  /// \brief Get the Input Tensor object
  ///
  /// \param[in] name input name
  /// \return input tensor
  ///
171 172
  std::unique_ptr<ZeroCopyTensor> GetInputTensor(
      const std::string &name) override;
173 174 175 176 177 178
  ///
  /// \brief Get the Output Tensor object
  ///
  /// \param[in] name otuput name
  /// \return output tensor
  ///
179 180
  std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
      const std::string &name) override;
181 182 183 184 185
  ///
  /// \brief Get all input names and their corresponding shapes
  ///
  /// \return the map of input names and shapes
  ///
186
  std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;
187 188 189 190 191 192
  ///
  /// \brief Get all input names and their corresponding type
  ///
  /// \return the map of input names and type
  ///
  std::map<std::string, paddle_infer::DataType> GetInputTypes() override;
193

194 195 196 197 198
  ///
  /// \brief Run the prediction engine
  ///
  /// \return Whether the function executed successfully
  ///
199 200
  bool ZeroCopyRun() override;

W
Wilber 已提交
201 202 203 204 205
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // Note: Can only be used under thread_local semantics.
  bool ExpRunWithExternalStream(const gpuStream_t stream);
#endif

206 207 208 209 210 211 212 213
  ///
  /// \brief Get the execution stream on devices with a concept of stream,
  /// otherwise returns nullptr.
  ///
  /// \return The execution stream or nullptr (CPU).
  ///
  void *GetExecStream() const override;

214 215 216 217 218
  ///
  /// \brief Create feed fetch variables
  ///
  /// \param[in] scope Scope needed to create variables
  ///
219
  void CreateFeedFetchVar(framework::Scope *scope);
220 221 222 223
  ///
  /// \brief Determine the model's inputs and outputs based on the program's
  /// feed fetch op
  ///
224
  void PrepareFeedFetch();
Y
Yan Chunwei 已提交
225

226 227 228 229
  ///
  /// \brief Set predictor's argument according to config, which mainly includes
  /// execution information and graph optimization related pass information
  ///
230
  void PrepareArgument();
231 232 233 234
  ///
  /// \brief According to argument information, execute the relevant pass
  /// to get the optimized model program
  ///
Y
Yan Chunwei 已提交
235 236
  void OptimizeInferenceProgram();

237 238 239 240
  ///
  /// \brief Clear the intermediate tensors of the predictor
  ///
  ///
241
  void ClearIntermediateTensor() override;
242

243 244 245 246 247 248 249 250 251 252 253
  ///
  /// \brief Release all tmp tensor to compress the size of the memory pool.
  /// The memory pool is considered to be composed of a list of chunks, if
  /// the chunk is not occupied, it can be released.
  ///
  /// \return Number of bytes released. It may be smaller than the actual
  /// released memory, because part of the memory is not managed by the
  /// MemoryPool.
  ///
  uint64_t TryShrinkMemory() override;

254 255 256 257 258
  ///
  /// \brief Get the argument used by predictor
  ///
  /// \return the argument obtained by config
  ///
259
  Argument &analysis_argument() { return *argument_; }
260 261 262 263 264
  ///
  /// \brief Clone to get the new predictor. thread safe.
  ///
  /// \return get a new predictor
  ///
265
  std::unique_ptr<PaddlePredictor> Clone(void *stream = nullptr) override;
266 267 268 269 270
  ///
  /// \brief Get the scope used by predictor
  ///
  /// \return scope
  ///
271
  framework::Scope *scope() { return scope_.get(); }
272 273 274 275 276
  ///
  /// \brief Get the inference program
  ///
  /// \return the inference program
  ///
277 278
  framework::ProgramDesc &program() { return *inference_program_; }

279 280 281 282 283
  ///
  /// \brief Get the serialized program
  ///
  /// \return the serialized program
  ///
284
  std::string GetSerializedProgram() const override;
Y
Yan Chunwei 已提交
285

286 287 288 289 290 291 292
  ///
  /// \brief Get the fusion_statis_t
  ///
  /// \return the fusion_statis_t
  ///
  Argument::fusion_statis_t fusion_statis() { return fusion_statis_; }

293 294 295 296 297 298 299 300 301 302
  ///
  /// \brief Register a output hook function to operate the intermediate tensor
  /// of op output. when using this function, memory reuse should be tured off.
  /// The hook function signature is void(const std::string&, const
  /// std::string&, const Tensor&>). Here, the first parameter is op's
  /// type, the second param is output var name of the op, and the third
  /// parameter is output tensor with the var name.
  ///
  void RegisterOutputHook(const Exp_OutputHookFunc &hookfunc) override;

303 304 305 306 307
  ///
  /// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
  ///
  /// \return Whether the function executed successfully
  ///
308 309
  bool MkldnnQuantize();

310 311 312 313 314
  ///
  /// \brief save program to model and save parameters to params
  ///
  /// \param[in] dir path to save the model
  ///
315 316
  void SaveOptimModel(const std::string &dir);

317
 protected:
318 319 320 321 322 323 324
  ///
  /// \brief Prepare predictor's required programs, including loading model
  /// information, graph optimization, and executor creation variables, etc.
  ///
  /// \param[in] program paddle program
  /// \return Whether the function executed successfully
  ///
325
  bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
326 327 328 329 330 331
  ///
  /// \brief Prepare scope environment, each predictor has its own scope
  ///
  /// \param[in] parent_scope The scope of the predictor to be cloned, or null
  /// \return Whether the function executed successfully
  ///
332
  bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
333 334 335 336 337
  ///
  /// \brief Create an Executor object
  ///
  /// \return Whether the function executed successfully
  ///
338
  bool CreateExecutor();
339 340 341 342 343
  ///
  /// \brief According to the model's program, the executor creates ops
  ///
  /// \return Whether the function executed successfully
  ///
344 345
  bool PrepareExecutor();

346 347 348 349 350
  ///
  /// \brief Load model program.
  ///
  /// \return Whether the function executed successfully
  ///
351
  bool LoadProgramDesc();
352 353 354 355 356
  ///
  /// \brief Load model parameters.
  ///
  /// \return Whether the function executed successfully
  ///
357
  bool LoadParameters();
358

359 360 361 362 363 364 365
  ///
  /// \brief Prepare input data, only used in Run()
  ///
  /// \param[in] input_datas inpute tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
366 367
  bool SetFeed(const std::vector<PaddleTensor> &input_datas,
               framework::Scope *scope);
368 369 370 371 372 373 374
  ///
  /// \brief Get the output data, only used in Run()
  ///
  /// \param[out] output_data output tensors
  /// \param[in] scope the scope used by predictor
  /// \return Whether the function executed successfully
  ///
375 376
  bool GetFetch(std::vector<PaddleTensor> *output_data,
                framework::Scope *scope);
377 378 379 380 381 382
  ///
  /// \brief Get the output data, only used in GetFetch()
  ///
  /// \param[in] tensor for fetch op
  /// \param[out] output_data output tensor
  ///
383
  template <typename T>
384
  void GetFetchOne(const phi::DenseTensor &fetchs, PaddleTensor *output_data);
385 386 387 388 389 390 391 392
  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensors
  ///
393
  void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
W
Wilber 已提交
394 395 396 397 398 399 400 401 402 403 404

  ///
  /// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
  /// \param[in] inputs tensor shape
  ///
  void MkldnnPreSet(const std::vector<std::vector<int>> &inputs_shape);

405 406 407 408 409 410
  ///
  /// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
  ///
  /// Used in AnalysisPredictor::Run(), do not support
  /// AnalysisPredictor::ZeroCopyRun() now.
  ///
411
  void MkldnnPostReset();
Y
Yan Chunwei 已提交
412

413
#ifdef PADDLE_WITH_TENSORRT
414 415 416 417 418 419 420 421 422 423 424 425 426 427
  ///
  /// \brief save calibration table
  ///
  /// When we use Paddle-TRT INT8 engine, we need to generate calibration table
  /// data first,
  /// the calibration table contains the range for each op's input and output,
  /// this whole process can be divided into several steps:
  /// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
  ///  histogram for each tensor of the distribution of activation values.
  /// 2. Builds a calibration table from the histograms.
  /// After step 2, we need to store the calibration table on disk.
  ///
  /// \return Whether the function executed successfully
  ///
N
nhzlx 已提交
428
  bool SaveTrtCalibToDisk();
N
nhzlx 已提交
429
#endif
N
nhzlx 已提交
430

431 432 433 434 435 436 437 438
// Some more detailed tests, they are made the friends of the predictor, so that
// the all the details can be tested.
#if PADDLE_WITH_TESTING
  FRIEND_TEST(AnalysisPredictor, analysis_off);
  FRIEND_TEST(AnalysisPredictor, analysis_on);
  FRIEND_TEST(AnalysisPredictor, with_gpu);
#endif

439 440 441
 protected:
  const void *GetDeviceContexts() const override;

442 443 444 445
 private:
  void StatisticShapeRangeInfo();
  void CollectShapeRangeInfo();

446 447 448 449
  void InitPlace();
  void InitDeviceContexts();
  void InitResourceManager(void *stream);

450
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
  // fleet exe related

  ///
  /// \brief prepare for fleet executor to run
  ///
  /// Used in AnalysisPredictor::Init(),
  ///
  bool PrepareFleetExecutor();

  ///
  /// \brief init NCCL env for multi gpus inference
  ///
  /// Used in AnalysisPredictor::PrepareFleetExecutor()
  ///
  bool CommInit();

  ///
  /// \brief read the config to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] ring_id_to_ranks: a ptr to ring_id_to_ranks
  /// \param[in] rank_to_ring_ids: a ptr to rank_to_ring_ids
  ///
  bool LoadConverterConfig(
      std::map<int64_t, std::vector<int64_t>> *ring_id_to_ranks,
      std::map<int64_t, std::vector<int64_t>> *rank_to_ring_ids);

  ///
  /// \brief add ops and run them with NaiveExecutor to init NCCL env
  ///
  /// Used in AnalysisPredictor::CommInit()
  ///
  /// \param[in] tmp_var_name: var name to hold NCCL unique id
  /// \param[in] nranks: number of ranks in one comm group
  /// \param[in] rank: relative rank of current rank in the comm group
  /// \param[in] peer_endpoints: group's peers' endpoints
  /// \param[in] block: the block to insert comm ops
  /// \param[in] ring_id: the ring id to be used to init NCCL env
  ///
491 492 493
  void InsertCommOp(std::string tmp_var_name,
                    int nranks,
                    int rank,
494
                    const std::vector<std::string> &peer_endpoints,
495 496
                    framework::BlockDesc *block,
                    int ring_id);
497 498
#endif

Y
Yan Chunwei 已提交
499
 private:
500
  AnalysisConfig config_;
501 502
  std::unique_ptr<Argument> argument_;
  Argument::fusion_statis_t fusion_statis_;
503 504 505 506 507
  std::unique_ptr<NaiveExecutor> executor_;
  platform::Place place_;
  std::shared_ptr<framework::Scope> scope_;
  framework::Scope *sub_scope_{nullptr};
  std::shared_ptr<framework::ProgramDesc> inference_program_;
508
  framework::OpCompatibleMap op_compatible_map_;
509 510
  std::vector<framework::OpDesc *> feeds_;
  std::map<std::string, size_t> feed_names_;
N
nhzlx 已提交
511 512
  // Sorted according to the idx.
  std::map<size_t, std::string> idx2feeds_;
Y
Yan Chunwei 已提交
513
  std::vector<framework::OpDesc *> fetches_;
N
nhzlx 已提交
514 515
  std::map<size_t, std::string> idx2fetches_;

516 517
  phi::DataType model_precision_{phi::DataType::FLOAT32};

518 519 520 521 522 523 524 525 526 527
#if PADDLE_WITH_MKLDNN
  // Helper class to perform quantization
  class MkldnnQuantizer;
  MkldnnQuantizer *mkldnn_quantizer_{nullptr};

#if PADDLE_WITH_TESTING
  friend class MkldnnQuantizerTest;
#endif
#endif

528
  // Memory buffer for feed inputs. The temporary LoDTensor will cause serious
529
  // concurrency problems, wrong results and memory leak, so cache them.
530
  std::vector<phi::DenseTensor> feed_tensors_;
Y
Yan Chunwei 已提交
531
  details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
Y
Yan Chunwei 已提交
532 533
  // A mutex help to make Clone thread safe.
  std::mutex clone_mutex_;
534

Y
Yan Chunwei 已提交
535 536 537 538
  // For memory optimization.
  const size_t max_shape_collect_count_{1000};
  int need_collect_var_shapes_{-1};  // -1 for default, 0 for false, 1 for true.
  std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
539
  int predictor_id_;
540
  int root_predictor_id_{-1};
Y
Yan Chunwei 已提交
541

542
 private:
543 544
  std::vector<Exp_OutputHookFunc> hookfuncs_;

545 546
  // Some status here that help to determine the status inside the predictor.
  bool status_is_cloned_{false};
547 548

  std::map<std::string, std::vector<std::vector<int32_t>>> shape_info_;
549
  std::map<std::string, std::vector<std::vector<int32_t>>> shape_tensor_value_;
550
  static int clone_num_;
551

552 553 554 555 556
  bool private_context_{false};
  void *predictor_stream_{nullptr};
  std::map<phi::Place, std::shared_future<std::unique_ptr<phi::DeviceContext>>>
      device_contexts_;

557
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
558 559 560 561 562
  // fleet executor related
  distributed::FleetExecutorDesc executor_desc_;
  std::shared_ptr<distributed::FleetExecutor> fleet_exe_;
  std::shared_ptr<distributed::TaskNode> task_node_;
#endif
W
Wilber 已提交
563
  friend class paddle_infer::experimental::InternalUtils;
Y
Yan Chunwei 已提交
564 565 566
};

}  // namespace paddle