logic.py 32.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from ..fluid.data_feeder import check_type, check_variable_and_dtype
17
from .layer_function_generator import templatedoc
Z
zhiboniu 已提交
18
from ..static import Variable
19

W
Weilong Wu 已提交
20
# TODO: define logic functions of a tensor
21
from ..fluid.framework import _in_eager_mode_
22

23 24
if _in_eager_mode_:
    Tensor = paddle.fluid.framework.core.eager.Tensor
W
Weilong Wu 已提交
25 26
else:
    from ..framework import VarBase as Tensor
27

28
from ..framework import in_dygraph_mode
29 30
from ..framework import LayerHelper
from ..fluid.framework import _in_legacy_dygraph
31

32
# TODO: define logic functions of a tensor
33
from paddle import _C_ops, _legacy_C_ops
34
from paddle.tensor.creation import full
35

36 37
__all__ = []

38

39
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
40
    if in_dygraph_mode():
41 42 43 44 45
        op = getattr(_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
46 47 48 49 50 51
    elif _in_legacy_dygraph():
        op = getattr(_legacy_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
52
    check_variable_and_dtype(
53 54
        x,
        "x",
55
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
56 57
        op_name,
    )
58
    if y is not None:
59
        check_variable_and_dtype(
60 61
            y,
            "y",
62
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
63 64
            op_name,
        )
65 66 67 68 69 70 71 72
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())

    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
73 74
            % (op_name, x.dtype, y.dtype)
        )
75 76 77 78 79

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
80 81 82
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


def logical_and(x, y, out=None, name=None):
    r"""

    ``logical_and`` operator computes element-wise logical AND on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x \&\& y

99
    Note:
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        ``paddle.logical_and`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True])
            y = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_and(x, y)
            print(res) # [True False True False]
    """
    if in_dygraph_mode():
122
        return _C_ops.logical_and(x, y)
123

124 125 126
    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True
    )
127 128 129 130 131 132 133 134 135 136 137 138


def logical_or(x, y, out=None, name=None):
    """

    ``logical_or`` operator computes element-wise logical OR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = x || y

139
    Note:
140
        ``paddle.logical_or`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155
    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Variable`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

156 157
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
158
            res = paddle.logical_or(x, y)
159 160 161 162
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[True , True ],
            #         [True , False]])
163 164
    """
    if in_dygraph_mode():
165
        return _C_ops.logical_or(x, y)
166 167 168
    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True
    )
169 170 171 172 173 174 175 176 177 178 179 180


def logical_xor(x, y, out=None, name=None):
    r"""

    ``logical_xor`` operator computes element-wise logical XOR on ``x`` and ``y``, and returns ``out``. ``out`` is N-dim boolean ``Tensor``.
    Each element of ``out`` is calculated by

    .. math::

        out = (x || y) \&\& !(x \&\& y)

181
    Note:
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        ``paddle.logical_xor`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting`.

    Args:
        x (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        y (Tensor): the input tensor, it's data type should be one of bool, int8, int16, in32, in64, float32, float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor`` will be created to save the output.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with ``x``.

    Examples:
        .. code-block:: python

            import paddle

198 199
            x = paddle.to_tensor([True, False], dtype="bool").reshape([2, 1])
            y = paddle.to_tensor([True, False, True, False], dtype="bool").reshape([2, 2])
200
            res = paddle.logical_xor(x, y)
201 202 203 204
            print(res)
            # Tensor(shape=[2, 2], dtype=bool, place=Place(cpu), stop_gradient=True,
            #        [[False, True ],
            #         [True , False]])
205 206
    """
    if in_dygraph_mode():
207
        return _C_ops.logical_xor(x, y)
208

209 210 211
    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242


@templatedoc()
def logical_not(x, out=None, name=None):
    """

    ``logical_not`` operator computes element-wise logical NOT on ``x``, and returns ``out``. ``out`` is N-dim boolean ``Variable``.
    Each element of ``out`` is calculated by

    .. math::

        out = !x

    Args:
        x(Tensor):  Operand of logical_not operator. Must be a Tensor of type bool, int8, int16, in32, in64, float32, or float64.
        out(Tensor): The ``Tensor`` that specifies the output of the operator, which can be any ``Tensor`` that has been created in the program. The default value is None, and a new ``Tensor` will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([True, False, True, False])
            res = paddle.logical_not(x)
            print(res) # [False  True False  True]
    """
    if in_dygraph_mode():
243
        return _C_ops.logical_not(x)
244 245 246
    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False
    )
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280


def is_empty(x, name=None):
    """

    Test whether a Tensor is empty.

    Args:
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])

    """
    if in_dygraph_mode():
        return _C_ops.is_empty(x)
281 282
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
283

284 285 286
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
    )
287 288 289 290 291
    check_type(name, "name", (str, type(None)), "is_empty")

    helper = LayerHelper("is_empty", **locals())
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
292 293 294
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
    )
295 296 297
    return cond


W
wawltor 已提交
298
def equal_all(x, y, name=None):
299
    """
300
    Returns the truth value of :math:`x == y`. True if two inputs have the same elements, False otherwise.
301

302
    Note:
303
        The output has no gradient.
304 305

    Args:
306 307
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
W
wawltor 已提交
308 309
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
310 311

    Returns:
W
wawltor 已提交
312
        Tensor: output Tensor, data type is bool, value is [False] or [True].
313 314 315 316 317

    Examples:
        .. code-block:: python

          import paddle
W
wawltor 已提交
318

319 320 321
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 2, 3])
          z = paddle.to_tensor([1, 4, 3])
W
wawltor 已提交
322
          result1 = paddle.equal_all(x, y)
N
Noel 已提交
323
          print(result1) # result1 = [True ]
W
wawltor 已提交
324
          result2 = paddle.equal_all(x, z)
N
Noel 已提交
325
          print(result2) # result2 = [False ]
326
    """
H
hong 已提交
327
    if in_dygraph_mode():
328
        return _C_ops.equal_all(x, y)
H
hong 已提交
329

Z
zhiboniu 已提交
330
    if paddle.in_dynamic_mode():
331
        return _legacy_C_ops.equal_all(x, y)
W
wawltor 已提交
332 333

    helper = LayerHelper("equal_all", **locals())
334
    out = helper.create_variable_for_type_inference(dtype='bool')
335 336 337
    helper.append_op(
        type='equal_all', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [out]}
    )
338
    return out
Z
Zhen Wang 已提交
339 340 341


@templatedoc()
342
def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
Z
Zhen Wang 已提交
343 344 345 346
    """
    ${comment}

    Args:
347 348
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
H
huangxu96 已提交
349 350
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
351 352 353
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.
Z
Zhen Wang 已提交
354 355

    Returns:
356 357
        Tensor: ${out_comment}.

Z
Zhen Wang 已提交
358 359 360 361 362
    Examples:
        .. code-block:: python

          import paddle

363 364
          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
365
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
366
                                  equal_nan=False, name="ignore_nan")
367
          # [False]
368

369
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
Z
Zhen Wang 已提交
370
                                      equal_nan=True, name="equal_nan")
371 372
          # [False]

373 374
          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
375 376 377
          result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [False]
378

379 380 381
          result2 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True]
Z
Zhen Wang 已提交
382 383
    """

384
    if in_dygraph_mode():
385
        return _C_ops.allclose(x, y, rtol, atol, equal_nan)
386
    if _in_legacy_dygraph():
387 388 389
        return _legacy_C_ops.allclose(
            x, y, 'rtol', str(rtol), 'atol', str(atol), 'equal_nan', equal_nan
        )
390 391
    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'allclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'allclose')
Z
Zhen Wang 已提交
392 393 394 395 396 397 398
    check_type(rtol, 'rtol', float, 'allclose')
    check_type(atol, 'atol', float, 'allclose')
    check_type(equal_nan, 'equal_nan', bool, 'allclose')

    helper = LayerHelper("allclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

399
    inputs = {'Input': x, 'Other': y}
Z
Zhen Wang 已提交
400
    outputs = {'Out': out}
401
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
402 403 404
    helper.append_op(
        type='allclose', inputs=inputs, outputs=outputs, attrs=attrs
    )
Z
Zhen Wang 已提交
405 406

    return out
407 408


W
wawltor 已提交
409 410
@templatedoc()
def equal(x, y, name=None):
411
    """
S
swtkiwi 已提交
412

413
    This layer returns the truth value of :math:`x == y` elementwise.
N
Noel 已提交
414

415
    Note:
416
        The output has no gradient.
417 418

    Args:
419 420
        x(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
        y(Tensor): Tensor, data type is bool, float32, float64, int32, int64.
421 422 423 424
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
W
wawltor 已提交
425
        Tensor: output Tensor, it's shape is the same as the input's Tensor,
426
        and the data type is bool. The result of this op is stop_gradient.
427 428 429 430

    Examples:
        .. code-block:: python

W
wawltor 已提交
431 432
          import paddle

433 434
          x = paddle.to_tensor([1, 2, 3])
          y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
435
          result1 = paddle.equal(x, y)
N
Noel 已提交
436
          print(result1)  # result1 = [True False False]
437
    """
438 439
    if not isinstance(y, (int, bool, float, Variable)):
        raise TypeError(
440 441 442 443
            "Type of input args must be float, bool, int or Tensor, but received type {}".format(
                type(y)
            )
        )
444 445 446
    if not isinstance(y, Variable):
        y = full(shape=[1], dtype=x.dtype, fill_value=y)

J
Jiabin Yang 已提交
447
    if in_dygraph_mode():
448
        default_axis = -1
449
        return _C_ops.equal(x, y, default_axis)
J
Jiabin Yang 已提交
450 451
    else:
        if _in_legacy_dygraph():
452
            return _legacy_C_ops.equal(x, y)
J
Jiabin Yang 已提交
453 454
        else:
            check_variable_and_dtype(
455 456 457 458 459
                x,
                "x",
                ["bool", "float32", "float64", "int32", "int64"],
                "equal",
            )
J
Jiabin Yang 已提交
460
            check_variable_and_dtype(
461 462 463 464 465
                y,
                "y",
                ["bool", "float32", "float64", "int32", "int64"],
                "equal",
            )
J
Jiabin Yang 已提交
466 467 468 469
            helper = LayerHelper("equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

470 471 472 473 474
            helper.append_op(
                type='equal',
                inputs={'X': [x], 'Y': [y]},
                outputs={'Out': [out]},
            )
J
Jiabin Yang 已提交
475
            return out
476

W
wawltor 已提交
477 478 479 480

@templatedoc()
def greater_equal(x, y, name=None):
    """
481
    Returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
N
Noel 已提交
482

483
    Note:
484
        The output has no gradient.
W
wawltor 已提交
485 486

    Args:
487 488
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
489 490 491
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
492
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
493 494 495

    Examples:
        .. code-block:: python
N
Noel 已提交
496

W
wawltor 已提交
497 498
            import paddle

499 500
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
501
            result1 = paddle.greater_equal(x, y)
N
Noel 已提交
502
            print(result1)  # result1 = [True False True]
W
wawltor 已提交
503
    """
J
Jiabin Yang 已提交
504
    if in_dygraph_mode():
505
        default_axis = -1
506
        return _C_ops.greater_equal(x, y, default_axis)
J
Jiabin Yang 已提交
507 508
    else:
        if _in_legacy_dygraph():
509
            return _legacy_C_ops.greater_equal(x, y)
J
Jiabin Yang 已提交
510 511
        else:
            check_variable_and_dtype(
512 513 514 515 516
                x,
                "x",
                ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal",
            )
J
Jiabin Yang 已提交
517
            check_variable_and_dtype(
518 519 520 521 522
                y,
                "y",
                ["bool", "float32", "float64", "int32", "int64"],
                "greater_equal",
            )
J
Jiabin Yang 已提交
523 524 525 526
            helper = LayerHelper("greater_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

527 528 529 530 531
            helper.append_op(
                type='greater_equal',
                inputs={'X': [x], 'Y': [y]},
                outputs={'Out': [out]},
            )
J
Jiabin Yang 已提交
532
            return out
W
wawltor 已提交
533 534 535 536 537


@templatedoc()
def greater_than(x, y, name=None):
    """
538
    Returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
N
Noel 已提交
539

540
    Note:
541
        The output has no gradient.
W
wawltor 已提交
542 543

    Args:
544 545
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
546 547 548
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
    Returns:
549
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
550 551 552

    Examples:
        .. code-block:: python
N
Noel 已提交
553

W
wawltor 已提交
554 555
            import paddle

556 557
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
558
            result1 = paddle.greater_than(x, y)
N
Noel 已提交
559
            print(result1)  # result1 = [False False True]
W
wawltor 已提交
560
    """
J
Jiabin Yang 已提交
561
    if in_dygraph_mode():
562
        return _C_ops.greater_than(x, y, -1)
J
Jiabin Yang 已提交
563 564
    else:
        if _in_legacy_dygraph():
565
            return _legacy_C_ops.greater_than(x, y)
J
Jiabin Yang 已提交
566 567
        else:
            check_variable_and_dtype(
568 569 570 571 572
                x,
                "x",
                ["bool", "float32", "float64", "int32", "int64"],
                "greater_than",
            )
J
Jiabin Yang 已提交
573
            check_variable_and_dtype(
574 575 576 577 578
                y,
                "y",
                ["bool", "float32", "float64", "int32", "int64"],
                "greater_than",
            )
J
Jiabin Yang 已提交
579 580 581 582
            helper = LayerHelper("greater_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

583 584 585 586 587
            helper.append_op(
                type='greater_than',
                inputs={'X': [x], 'Y': [y]},
                outputs={'Out': [out]},
            )
J
Jiabin Yang 已提交
588
            return out
W
wawltor 已提交
589 590 591 592 593


@templatedoc()
def less_equal(x, y, name=None):
    """
594
    Returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
N
Noel 已提交
595

596
    Note:
597
        The output has no gradient.
W
wawltor 已提交
598 599

    Args:
600 601
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
602 603 604 605
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
606
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
607 608 609

    Examples:
        .. code-block:: python
N
Noel 已提交
610

W
wawltor 已提交
611 612
            import paddle

613 614
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
615
            result1 = paddle.less_equal(x, y)
N
Noel 已提交
616
            print(result1)  # result1 = [True True False]
W
wawltor 已提交
617
    """
J
Jiabin Yang 已提交
618
    if in_dygraph_mode():
0
0x45f 已提交
619
        axis = -1
620
        return _C_ops.less_equal(x, y, axis)
J
Jiabin Yang 已提交
621 622
    else:
        if _in_legacy_dygraph():
623
            return _legacy_C_ops.less_equal(x, y)
J
Jiabin Yang 已提交
624 625
        else:
            check_variable_and_dtype(
626 627 628 629 630
                x,
                "x",
                ["bool", "float32", "float64", "int32", "int64"],
                "less_equal",
            )
J
Jiabin Yang 已提交
631
            check_variable_and_dtype(
632 633 634 635 636
                y,
                "y",
                ["bool", "float32", "float64", "int32", "int64"],
                "less_equal",
            )
J
Jiabin Yang 已提交
637 638 639 640
            helper = LayerHelper("less_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

641 642 643 644 645
            helper.append_op(
                type='less_equal',
                inputs={'X': [x], 'Y': [y]},
                outputs={'Out': [out]},
            )
J
Jiabin Yang 已提交
646
            return out
W
wawltor 已提交
647 648 649 650 651


@templatedoc()
def less_than(x, y, name=None):
    """
652
    Returns the truth value of :math:`x < y` elementwise, which is equivalent function to the overloaded operator `<`.
N
Noel 已提交
653

654
    Note:
655
        The output has no gradient.
W
wawltor 已提交
656 657

    Args:
658 659
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
660 661 662 663
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
664
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
665 666 667

    Examples:
        .. code-block:: python
N
Noel 已提交
668

W
wawltor 已提交
669 670
            import paddle

671 672
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
673
            result1 = paddle.less_than(x, y)
N
Noel 已提交
674
            print(result1)  # result1 = [False True False]
W
wawltor 已提交
675
    """
J
Jiabin Yang 已提交
676
    if in_dygraph_mode():
677
        default_axis = -1
678
        return _C_ops.less_than(x, y, default_axis)
J
Jiabin Yang 已提交
679 680
    else:
        if _in_legacy_dygraph():
681
            return _legacy_C_ops.less_than(x, y)
J
Jiabin Yang 已提交
682 683
        else:
            check_variable_and_dtype(
684 685 686 687 688
                x,
                "x",
                ["bool", "float32", "float64", "int32", "int64"],
                "less_than",
            )
J
Jiabin Yang 已提交
689
            check_variable_and_dtype(
690 691 692 693 694
                y,
                "y",
                ["bool", "float32", "float64", "int32", "int64"],
                "less_than",
            )
J
Jiabin Yang 已提交
695 696 697 698
            helper = LayerHelper("less_than", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

699 700 701 702 703
            helper.append_op(
                type='less_than',
                inputs={'X': [x], 'Y': [y]},
                outputs={'Out': [out]},
            )
J
Jiabin Yang 已提交
704
            return out
W
wawltor 已提交
705 706 707 708 709


@templatedoc()
def not_equal(x, y, name=None):
    """
710
    Returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
711 712

    Note:
713
        The output has no gradient.
W
wawltor 已提交
714 715

    Args:
716 717
        x(Tensor): First input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
        y(Tensor): Second input to compare which is N-D tensor. The input data type should be bool, float32, float64, int32, int64.
W
wawltor 已提交
718 719 720 721
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
722
        Tensor: The output shape is same as input :attr:`x`. The output data type is bool.
W
wawltor 已提交
723 724 725

    Examples:
        .. code-block:: python
726

W
wawltor 已提交
727 728
            import paddle

729 730
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.to_tensor([1, 3, 2])
W
wawltor 已提交
731
            result1 = paddle.not_equal(x, y)
N
Noel 已提交
732
            print(result1)  # result1 = [False True True]
W
wawltor 已提交
733
    """
J
Jiabin Yang 已提交
734
    if in_dygraph_mode():
0
0x45f 已提交
735
        axis = -1
736
        return _C_ops.not_equal(x, y, axis)
J
Jiabin Yang 已提交
737 738
    else:
        if _in_legacy_dygraph():
739
            return _legacy_C_ops.not_equal(x, y)
J
Jiabin Yang 已提交
740 741
        else:
            check_variable_and_dtype(
742 743 744 745 746
                x,
                "x",
                ["bool", "float32", "float64", "int32", "int64"],
                "not_equal",
            )
J
Jiabin Yang 已提交
747
            check_variable_and_dtype(
748 749 750 751 752
                y,
                "y",
                ["bool", "float32", "float64", "int32", "int64"],
                "not_equal",
            )
J
Jiabin Yang 已提交
753 754 755 756
            helper = LayerHelper("not_equal", **locals())
            out = helper.create_variable_for_type_inference(dtype='bool')
            out.stop_gradient = True

757 758 759 760 761
            helper.append_op(
                type='not_equal',
                inputs={'X': [x], 'Y': [y]},
                outputs={'Out': [out]},
            )
J
Jiabin Yang 已提交
762
            return out
Z
zhulei 已提交
763 764 765 766 767


def is_tensor(x):
    """

C
Chen Long 已提交
768
    Tests whether input object is a paddle.Tensor.
Z
zhulei 已提交
769 770 771 772 773

    Args:
        x (object): Object to test.

    Returns:
C
Chen Long 已提交
774
        A boolean value. True if ``x`` is a paddle.Tensor, otherwise False.
Z
zhulei 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.rand(shape=[2, 3, 5], dtype='float32')
            check = paddle.is_tensor(input1)
            print(check)  #True

            input3 = [1, 4]
            check = paddle.is_tensor(input3)
            print(check)  #False
788

Z
zhulei 已提交
789
    """
H
hong 已提交
790
    return isinstance(x, (Tensor, paddle.fluid.core.eager.Tensor))
791 792 793


def _bitwise_op(op_name, x, y, out=None, name=None, binary_op=True):
794
    if in_dygraph_mode():
W
wanghuancoder 已提交
795
        op = getattr(_C_ops, op_name)
796 797 798 799
        if binary_op:
            return op(x, y)
        else:
            return op(x)
800 801 802 803 804 805
    elif _in_legacy_dygraph():
        op = getattr(_legacy_C_ops, op_name)
        if binary_op:
            return op(x, y)
        else:
            return op(x)
806 807

    check_variable_and_dtype(
808 809
        x, "x", ["bool", "uint8", "int8", "int16", "int32", "int64"], op_name
    )
810 811
    if y is not None:
        check_variable_and_dtype(
812 813 814 815 816
            y,
            "y",
            ["bool", "uint8", "int8", "int16", "int32", "int64"],
            op_name,
        )
817 818 819 820 821 822 823 824 825 826 827
    if out is not None:
        check_type(out, "out", Variable, op_name)

    helper = LayerHelper(op_name, **locals())
    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if binary_op:
828 829 830
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
831 832 833 834 835 836 837 838 839 840
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def bitwise_and(x, y, out=None, name=None):
    """
    ${comment}
841

842 843 844 845 846 847 848
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}
849

850 851 852 853 854 855 856 857 858
    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_and(x, y)
            print(res)  # [0, 2, 1]
    """
0
0x45f 已提交
859
    if in_dygraph_mode() and out is None:
860
        return _C_ops.bitwise_and(x, y)
861 862 863
    return _bitwise_op(
        op_name="bitwise_and", x=x, y=y, name=name, out=out, binary_op=True
    )
864 865 866 867 868 869


@templatedoc()
def bitwise_or(x, y, out=None, name=None):
    """
    ${comment}
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_or(x, y)
            print(res)  # [-1, -1, -3]
    """
0
0x45f 已提交
888
    if in_dygraph_mode() and out is None:
889
        return _C_ops.bitwise_or(x, y)
H
hong 已提交
890

891 892 893
    return _bitwise_op(
        op_name="bitwise_or", x=x, y=y, name=name, out=out, binary_op=True
    )
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917


@templatedoc()
def bitwise_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x (Tensor): ${x_comment}
        y (Tensor): ${y_comment}
        out(Tensor): ${out_comment}

    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            y = paddle.to_tensor([4,  2, -3])
            res = paddle.bitwise_xor(x, y)
            print(res) # [-1, -3, -4]
    """
0
0x45f 已提交
918
    if in_dygraph_mode() and out is None:
919
        return _C_ops.bitwise_xor(x, y)
920 921 922
    return _bitwise_op(
        op_name="bitwise_xor", x=x, y=y, name=name, out=out, binary_op=True
    )
923 924 925 926 927 928 929 930 931 932


@templatedoc()
def bitwise_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(Tensor):  ${x_comment}
        out(Tensor): ${out_comment}
933

934 935 936 937 938 939 940 941 942 943 944
    Returns:
        Tensor: ${out_comment}

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.to_tensor([-5, -1, 1])
            res = paddle.bitwise_not(x)
            print(res) # [4, 0, -2]
    """
0
0x45f 已提交
945
    if in_dygraph_mode() and out is None:
946
        return _C_ops.bitwise_not(x)
947

948 949 950
    return _bitwise_op(
        op_name="bitwise_not", x=x, y=None, name=name, out=out, binary_op=False
    )
A
andyjpaddle 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993


@templatedoc()
def isclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
    """
    ${comment}

    Args:
        x(Tensor): ${input_comment}.
        y(Tensor): ${other_comment}.
        rtol(rtoltype, optional): The relative tolerance. Default: :math:`1e-5` .
        atol(atoltype, optional): The absolute tolerance. Default: :math:`1e-8` .
        equal_nan(equalnantype, optional): ${equal_nan_comment}.
        name (str, optional): Name for the operation. For more information, please
            refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: ${out_comment}.

    Examples:
        .. code-block:: python

          import paddle

          x = paddle.to_tensor([10000., 1e-07])
          y = paddle.to_tensor([10000.1, 1e-08])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, False]

          x = paddle.to_tensor([1.0, float('nan')])
          y = paddle.to_tensor([1.0, float('nan')])
          result1 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                  equal_nan=False, name="ignore_nan")
          # [True, False]
          result2 = paddle.isclose(x, y, rtol=1e-05, atol=1e-08,
                                      equal_nan=True, name="equal_nan")
          # [True, True]
    """

994
    if in_dygraph_mode():
995
        return _C_ops.isclose(x, y, rtol, atol, equal_nan)
996
    if _in_legacy_dygraph():
997 998 999
        return _legacy_C_ops.isclose(
            x, y, 'rtol', str(rtol), 'atol', str(atol), 'equal_nan', equal_nan
        )
A
andyjpaddle 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012

    check_variable_and_dtype(x, "input", ['float32', 'float64'], 'isclose')
    check_variable_and_dtype(y, "input", ['float32', 'float64'], 'isclose')
    check_type(rtol, 'rtol', float, 'isclose')
    check_type(atol, 'atol', float, 'isclose')
    check_type(equal_nan, 'equal_nan', bool, 'isclose')

    helper = LayerHelper("isclose", **locals())
    out = helper.create_variable_for_type_inference(dtype='bool')

    inputs = {'Input': x, 'Other': y}
    outputs = {'Out': out}
    attrs = {'rtol': str(rtol), 'atol': str(atol), 'equal_nan': equal_nan}
1013 1014 1015
    helper.append_op(
        type='isclose', inputs=inputs, outputs=outputs, attrs=attrs
    )
A
andyjpaddle 已提交
1016
    return out