common.py 63.2 KB
Newer Older
S
shiyutang 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
S
shiyutang 已提交
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define the common classes to build a neural network
16
import paddle
Z
zhiboniu 已提交
17
from ...fluid.dygraph import Flatten  # noqa: F401
18
from .. import functional as F
Z
zhiboniu 已提交
19
from paddle.nn import Layer
Z
zhiboniu 已提交
20
from paddle import in_dynamic_mode
21

22 23
__all__ = []

24

25
def _npairs(x, n):
26
    if isinstance(x, (paddle.Tensor, list, tuple)):
27 28 29 30 31
        return x
    x = [x] * (n * 2)
    return x


S
shiyutang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
class Identity(Layer):
    r"""

    A placeholder identity operator that is argument-insensitive. For each input :math:`X` ,
    the output :math:`Out` is:

    .. math::

        Out = X

    Parameters:
        args: any argument (unused)
        kwargs: any keyword argument (unused)

    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, n1, n2, ...]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, n1, n2, ...]` .

    Examples:
        .. code-block:: python

          import paddle

          input_tensor = paddle.randn(shape=[3, 2])
          layer = paddle.nn.Identity()
          out = layer(input_tensor)
          # input_tensor: [[-0.32342386 -1.200079  ]
          #                [ 0.7979031  -0.90978354]
          #                [ 0.40597573  1.8095392 ]]
          # out: [[-0.32342386 -1.200079  ]
          #      [ 0.7979031  -0.90978354]
          #      [ 0.40597573  1.8095392 ]]


    """

    def __init__(self, *args, **kwargs):
        super(Identity, self).__init__()

    def forward(self, input):
        return input


Z
zhiboniu 已提交
75
class Linear(Layer):
76
    r"""
77 78 79

    Fully-connected linear transformation layer. For each input :math:`X` ,
    the equation is:
80 81 82

    .. math::

83
        Out = XW + b
84

85
    where :math:`W` is the weight and :math:`b` is the bias.
86

87 88 89 90 91 92 93
    Linear layer takes only one multi-dimensional tensor as input with the
    shape :math:`[batch\_size, *, in\_features]` , where :math:`*` means any
    number of additional dimensions. It multiplies input tensor with the weight
    (a 2-D tensor of shape :math:`[in\_features, out\_features]` ) and produces
    an output tensor of shape :math:`[batch\_size, *, out\_features]` .
    If :math:`bias\_attr` is not False, the bias (a 1-D tensor of
    shape :math:`[out\_features]` ) will be created and added to the output.
94 95

    Parameters:
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        in_features (int): The number of input units.
        out_features (int): The number of output units.
        weight_attr (ParamAttr, optional): The attribute for the learnable
            weight of this layer. The default value is None and the weight will be
            initialized to zero. For detailed information, please refer to
            paddle.ParamAttr.
        bias_attr (ParamAttr|bool, optional): The attribute for the learnable bias
            of this layer. If it is set to False, no bias will be added to the output.
            If it is set to None or one kind of ParamAttr, a bias parameter will
            be created according to ParamAttr. For detailed information, please refer
            to paddle.ParamAttr. The default value is None and the bias will be
            initialized to zero.
        name (str, optional): Normally there is no need for user to set this parameter.
            For detailed information, please refer to :ref:`api_guide_Name` .

    Attribute:
        **weight** (Parameter): the learnable weight of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Shape:
        - input: Multi-dimentional tensor with shape :math:`[batch\_size, *, in\_features]` .
        - output: Multi-dimentional tensor with shape :math:`[batch\_size, *, out\_features]` .
119 120 121 122 123

    Examples:
        .. code-block:: python

          import paddle
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

          # Define the linear layer.
          weight_attr = paddle.ParamAttr(
              name="weight",
              initializer=paddle.nn.initializer.Constant(value=0.5))
          bias_attr = paddle.ParamAttr(
              name="bias",
              initializer=paddle.nn.initializer.Constant(value=1.0))
          linear = paddle.nn.Linear(2, 4, weight_attr=weight_attr, bias_attr=bias_attr)
          # linear.weight: [[0.5 0.5 0.5 0.5]
          #                 [0.5 0.5 0.5 0.5]]
          # linear.bias: [1. 1. 1. 1.]

          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          y = linear(x)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
145 146
    """

147 148 149 150 151 152 153 154
    def __init__(
        self,
        in_features,
        out_features,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
155 156 157 158
        super(Linear, self).__init__()
        self._dtype = self._helper.get_default_dtype()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
159 160 161 162 163 164 165 166 167 168 169 170
        self.weight = self.create_parameter(
            shape=[in_features, out_features],
            attr=self._weight_attr,
            dtype=self._dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[out_features],
            attr=self._bias_attr,
            dtype=self._dtype,
            is_bias=True,
        )
171 172 173
        self.name = name

    def forward(self, input):
174 175 176
        out = F.linear(
            x=input, weight=self.weight, bias=self.bias, name=self.name
        )
177 178
        return out

179 180 181
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'in_features={}, out_features={}, dtype={}{}'.format(
182 183
            self.weight.shape[0], self.weight.shape[1], self._dtype, name_str
        )
184

185

Z
zhiboniu 已提交
186
class Upsample(Layer):
187 188
    """
    This op resizes a batch of images.
189

190 191 192
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
193 194
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
195
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
196

197
    Supporting resample methods:
198 199 200 201 202 203
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation

T
tangwei12 已提交
204 205 206
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

207 208 209 210 211 212 213 214 215
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
T
tangwei12 已提交
216

217 218 219 220
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
221 222 223 224 225

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
226
    align_corners and align_mode are optional parameters,the calculation method
227 228
    of interpolation can be selected by them.

229 230 231 232 233 234
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

235 236 237 238
    Example:

    .. code-block:: text

239
        For scale_factor:
240 241 242 243 244
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

245 246 247 248 249 250 251 252 253 254
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
255 256 257 258 259 260 261 262 263 264 265 266 267 268

        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
T
tangwei12 已提交
269

270 271 272
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
273

274 275 276 277 278
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
279

280 281 282 283 284 285 286 287 288 289 290 291
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
292

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

314 315
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
T
tangwei12 已提交
316

317 318
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
T
tangwei12 已提交
319

320 321
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
T
tangwei12 已提交
322

323 324
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
T
tangwei12 已提交
325

326 327
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
T
tangwei12 已提交
328

329
    Parameters:
X
xiaoting 已提交
330
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
331
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
332
        size (list|tuple|Tensor|None): Output shape of image resize
333 334
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
335
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
336
             If a Tensor , its dimensions size should be a 1.
337 338 339
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`. Has to match input size if it is either a list or a tuple or a Tensor.
340
             Default: None.
341 342
        mode (str): The resample method. It supports 'linear', 'nearst', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
343 344 345
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
346 347 348 349
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
350
        data_format (str, optional): Specify the data format of the input, and the data format of the output
351
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
352 353 354
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
355 356 357
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
358 359 360
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
361
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
362 363 364

    Examples:
        .. code-block:: python
365

366
            import paddle
X
xiaoting 已提交
367
            import paddle.nn as nn
368
            import numpy as np
X
xiaoting 已提交
369

370
            input_data = np.random.rand(2,3,6,10).astype("float32")
371
            upsample_out  = paddle.nn.Upsample(size=[12,12])
X
xiaoting 已提交
372 373 374 375 376 377

            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]

378 379
    """

380 381 382 383 384 385 386 387 388 389
    def __init__(
        self,
        size=None,
        scale_factor=None,
        mode='nearest',
        align_corners=False,
        align_mode=0,
        data_format='NCHW',
        name=None,
    ):
390
        super(Upsample, self).__init__()
391 392 393
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode.lower()
394 395 396
        self.align_corners = align_corners
        self.align_mode = align_mode
        self.data_format = data_format
X
xiaoting 已提交
397
        self.name = name
398

X
xiaoting 已提交
399
    def forward(self, x):
400 401 402 403 404 405 406 407 408 409
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode=self.mode,
            align_corners=self.align_corners,
            align_mode=self.align_mode,
            data_format=self.data_format,
            name=self.name,
        )
X
xiaoting 已提交
410 411 412

        return out

413 414 415 416 417 418 419
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
        return '{}, mode={}, align_corners={}, align_mode={}, data_format={}{}'.format(
420 421 422 423 424 425 426
            main_str,
            self.mode,
            self.align_corners,
            self.align_mode,
            self.data_format,
            name_str,
        )
427

X
xiaoting 已提交
428

Z
zhiboniu 已提交
429
class UpsamplingNearest2D(Layer):
X
xiaoting 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    """
    This op upsamples a batch of images, using nearest neighbours' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
447
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),


    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
472
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
473 474 475 476 477 478 479
            upsample_out  = paddle.nn.UpsamplingNearest2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

480 481 482
    def __init__(
        self, size=None, scale_factor=None, data_format='NCHW', name=None
    ):
X
xiaoting 已提交
483 484 485 486 487 488 489
        super(UpsamplingNearest2D, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
490 491 492 493 494 495 496 497 498 499
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode='nearest',
            align_corners=False,
            align_mode=0,
            data_format=self.data_format,
            name=self.name,
        )
X
xiaoting 已提交
500 501 502

        return out

503 504 505 506 507 508
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
509 510 511
        return '{}, data_format={}{}'.format(
            main_str, self.data_format, name_str
        )
512

X
xiaoting 已提交
513

Z
zhiboniu 已提交
514
class UpsamplingBilinear2D(Layer):
X
xiaoting 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    """
    This op upsamples a batch of images, using bilinear' pixel values.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w),
    where in_w is width of the input tensor, in_h is the height of the input tensor.
    And the upsampling only applies on the two dimensions(height and width).
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

    Parameters:
        x (Tensor): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor.
534
             Default: None. If a list/tuple, each element can be an integer or a Tensor  of shape: [1].
X
xiaoting 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
             If a Tensor , its dimensions size should be a 1.
        scale_factor (float|int|list|tuple|Tensor|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.
             Has to match input size if it is either a list or a tuple or a Tensor.
             Default: None.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
558
            input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
X
xiaoting 已提交
559 560 561 562 563 564 565
            upsample_out  = paddle.nn.UpsamplingBilinear2D(size=[12,12])
            input = paddle.to_tensor(input_data)
            output = upsample_out(x=input)
            print(output.shape)
            # [2L, 3L, 12L, 12L]
    """

566 567 568
    def __init__(
        self, size=None, scale_factor=None, data_format='NCHW', name=None
    ):
X
xiaoting 已提交
569 570 571 572 573 574 575
        super(UpsamplingBilinear2D, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.data_format = data_format
        self.name = name

    def forward(self, x):
576 577 578 579 580 581 582 583 584 585
        out = F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode='bilinear',
            align_corners=True,
            align_mode=0,
            data_format=self.data_format,
            name=self.name,
        )
X
xiaoting 已提交
586 587 588

        return out

589 590 591 592 593 594
    def extra_repr(self):
        if self.scale_factor is not None:
            main_str = 'scale_factor={}'.format(self.scale_factor)
        else:
            main_str = 'size={}'.format(self.size)
        name_str = ', name={}'.format(self.name) if self.name else ''
595 596 597
        return '{}, data_format={}{}'.format(
            main_str, self.data_format, name_str
        )
598

X
xiaoting 已提交
599

Z
zhiboniu 已提交
600
class Bilinear(Layer):
601
    r"""
602 603 604 605

    This layer performs bilinear on two inputs.

    .. math::
606

607
      out_{i} = x1 * W_{i} * {x2^\mathrm{T}}, i=0,1,...,outfeatures-1
608

609 610 611 612 613 614
      out = out + b

    In this formula:
     - :math:`x1`: the first input contains in1_features elements, shape is [batch_size, in1_features].
     - :math:`x2`: the second input contains in2_features elements, shape is [batch_size, in2_features].
     - :math:`W_{i}`: the i-th learned weight, shape is [in1_features, in2_features], and learned weight's shape is [out_features, in1_features, in2_features].
615
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size], and out's shape is [batch_size, out_features].
616 617 618 619 620 621 622
     - :math:`b`: the learned bias, shape is [1, out_features].
     - :math:`x2^\mathrm{T}`: the transpose of :math:`x2`.

    Parameters:
       in1_features (int): The dimension of each first input(`x1`).
       in2_features (int): The dimension of each second input(`x2`).
       out_features (int): The dimension of output of this layer.
T
tangwei12 已提交
623
       weight_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
624 625 626
       this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
           of this layer. If it is set to False, no bias will be added to the output units.
T
tangwei12 已提交
627
           If it is set to None, the bias is initialized zero. The default value is None.
628 629 630 631 632 633 634 635 636
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.

    Returns:
637
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

    Examples:
       .. code-block:: python

        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinear = paddle.nn.Bilinear(
            in1_features=5, in2_features=4, out_features=1000)
        result = bilinear(paddle.to_tensor(layer1),
                        paddle.to_tensor(layer2))     # result shape [5, 1000]

    """

654 655 656 657 658 659 660 661 662
    def __init__(
        self,
        in1_features,
        in2_features,
        out_features,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
663 664 665 666 667 668 669 670 671 672
        super(Bilinear, self).__init__()
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._name = name
        self._in1_features = in1_features
        self._in2_features = in2_features
        self._out_features = out_features
        self._dtype = self._helper.get_default_dtype()

        weight_shape = [
673 674 675
            self._out_features,
            self._in1_features,
            self._in2_features,
676
        ]
677 678 679 680 681 682
        self.weight = self.create_parameter(
            attr=self._weight_attr,
            shape=weight_shape,
            dtype=self._dtype,
            is_bias=False,
        )
683
        bias_shape = [1, self._out_features]
684 685 686 687 688 689
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_shape,
            dtype=self._dtype,
            is_bias=True,
        )
690 691 692 693

    def forward(self, x1, x2):
        return F.bilinear(x1, x2, self.weight, self.bias, self._name)

694 695 696
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'in1_features={}, in2_features={}, out_features={}, dtype={}{}'.format(
697 698 699 700 701 702
            self._in1_features,
            self._in2_features,
            self._out_features,
            self._dtype,
            name_str,
        )
703

704

Z
zhiboniu 已提交
705
class Dropout(Layer):
706 707 708
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training as described in the paper:
T
tangwei12 已提交
709
    `Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_
710 711 712 713
    The dropout operator randomly sets the outputs of some units to zero, while upscale others
    according to the given dropout probability.

    See ``paddle.nn.functional.dropout`` for more details.
714 715

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.
716 717

    Parameters:
718 719
        p (float|int): Probability of setting units to zero. Default: 0.5
        axis (int|list|tuple): The axis along which the dropout is performed. Default None.
720 721 722 723 724 725 726 727 728 729 730
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer']

                               1. upscale_in_train(default), upscale the output at training time

                                  - train: out = input * mask / ( 1.0 - p )
                                  - inference: out = input

                               2. downscale_in_infer, downscale the output at inference

                                  - train: out = input * mask
                                  - inference: out = input * (1.0 - p)
731
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
732 733 734 735 736

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

737

738 739
    Examples:
        .. code-block:: python
740

741 742 743 744 745 746 747 748 749
            import paddle
            import numpy as np

            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.Dropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
750 751 752
            print(x)
            print(y_train)
            print(y_test)
753
    """
754 755 756 757 758 759 760 761 762 763

    def __init__(self, p=0.5, axis=None, mode="upscale_in_train", name=None):
        super(Dropout, self).__init__()

        self.p = p
        self.axis = axis
        self.mode = mode
        self.name = name

    def forward(self, input):
764 765 766 767 768 769 770 771
        out = F.dropout(
            input,
            p=self.p,
            axis=self.axis,
            training=self.training,
            mode=self.mode,
            name=self.name,
        )
772 773
        return out

774 775
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
776 777 778
        return 'p={}, axis={}, mode={}{}'.format(
            self.p, self.axis, self.mode, name_str
        )
779

780

Z
zhiboniu 已提交
781
class Dropout2D(Layer):
782 783 784 785
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW`). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
786
    Dropout2D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
787
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
788 789 790

    See ``paddle.nn.functional.dropout2d`` for more details.

791 792
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

793 794
    Parameters:
        p (float, optional): Probability of setting units to zero. Default: 0.5
795
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC`. The default is `NCHW`. When it is `NCHW`, the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
796 797 798 799 800 801
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 4-D tensor.
        - output: 4-D tensor, the same shape as input.

802

803 804
    Examples:
        .. code-block:: python
805

806 807 808 809 810
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
C
cnn 已提交
811
            m = paddle.nn.Dropout2D(p=0.5)
812 813 814
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
815 816 817
            print(x)
            print(y_train)
            print(y_test)
818
    """
819 820

    def __init__(self, p=0.5, data_format='NCHW', name=None):
C
cnn 已提交
821
        super(Dropout2D, self).__init__()
822 823 824 825 826 827

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
828 829 830 831 832 833 834
        out = F.dropout2d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name,
        )
835 836
        return out

837 838
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
839 840 841
        return 'p={}, data_format={}{}'.format(
            self.p, self.data_format, name_str
        )
842

843

Z
zhiboniu 已提交
844
class Dropout3D(Layer):
845 846 847 848
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.
C
cnn 已提交
849
    Dropout3D will help promote independence between feature maps as described in the paper:
T
tangwei12 已提交
850
    `Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
851 852 853

    See ``paddle.nn.functional.dropout3d`` for more details.

854 855
    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

856 857
    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
858
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCDHW` or `NDHWC`. The default is `NCDHW`. When it is `NCDHW`, the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
859 860 861 862 863 864
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: 5-D tensor.
        - output: 5-D tensor, the same shape as input.

865

866 867
    Examples:
        .. code-block:: python
868

869 870 871 872 873
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
C
cnn 已提交
874
            m = paddle.nn.Dropout3D(p=0.5)
875 876 877
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
878 879 880
            print(x)
            print(y_train)
            print(y_test)
881
    """
882 883

    def __init__(self, p=0.5, data_format='NCDHW', name=None):
C
cnn 已提交
884
        super(Dropout3D, self).__init__()
885 886 887 888 889 890

        self.p = p
        self.data_format = data_format
        self.name = name

    def forward(self, input):
891 892 893 894 895 896 897
        out = F.dropout3d(
            input,
            p=self.p,
            training=self.training,
            data_format=self.data_format,
            name=self.name,
        )
898 899
        return out

900 901
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
902 903 904
        return 'p={}, data_format={}{}'.format(
            self.p, self.data_format, name_str
        )
905

906

Z
zhiboniu 已提交
907
class AlphaDropout(Layer):
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property. For an input with
    zero mean and unit standard deviation, the output of Alpha Dropout maintains the original mean and
    standard deviation of the input. Alpha Dropout fits well to SELU activate function by randomly setting
    activations to the negative saturation value.

    For more information, please refer to:
    `Self-Normalizing Neural Networks <https://arxiv.org/abs/1706.02515>`_

    In dygraph mode, please use ``eval()`` to switch to evaluation mode, where dropout is disabled.

    Parameters:
        p (float | int): Probability of setting units to zero. Default: 0.5
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: N-D tensor.
        - output: N-D tensor, the same shape as input.

    Examples:
        .. code-block:: python
929

930 931 932 933 934 935 936 937 938
            import paddle
            import numpy as np

            x = np.array([[-1, 1], [-1, 1]]).astype('float32')
            x = paddle.to_tensor(x)
            m = paddle.nn.AlphaDropout(p=0.5)
            y_train = m(x)
            m.eval()  # switch the model to test phase
            y_test = m(x)
939 940
            print(x)
            print(y_train)
941
            # [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
942
            print(y_test)
943
    """
944 945 946 947 948 949 950

    def __init__(self, p=0.5, name=None):
        super(AlphaDropout, self).__init__()
        self.p = p
        self.name = name

    def forward(self, input):
951 952 953
        out = F.alpha_dropout(
            input, p=self.p, training=self.training, name=self.name
        )
954 955
        return out

956 957 958 959
    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
        return 'p={}{}'.format(self.p, name_str)

960

Z
zhiboniu 已提交
961
class Pad1D(Layer):
L
littletomatodonkey 已提交
962
    """
L
littletomatodonkey 已提交
963 964 965
    This interface is used to construct a callable object of the ``Pad1D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater than width-1.
L
littletomatodonkey 已提交
966 967

    Parameters:
968
        padding (Tensor|list[int]|int): The padding size with data type int. If is int, use the
969
            same padding in both dimensions. Else [len(padding)/2] dimensions
L
littletomatodonkey 已提交
970
            of input will be padded. The pad has the form (pad_left, pad_right).
971 972 973 974 975 976 977 978 979
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'. Default is 'constant'.

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

        value (float, optional): The value to fill the padded areas. Default is :math:`0.0`。
        data_format (str, optional): An string from: "NCL", "NLC". Specify the data format of the input data.
L
littletomatodonkey 已提交
980
           Default is  "NCL"
981
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
982 983

    Returns:
L
littletomatodonkey 已提交
984 985 986 987
        None

    Examples:
        .. code-block:: python
988

L
littletomatodonkey 已提交
989 990 991 992 993
            import paddle
            import paddle.nn as nn

            input_shape = (1, 2, 3)
            pad = [1, 2]
L
littletomatodonkey 已提交
994
            mode = "constant"
995
            data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1
L
littletomatodonkey 已提交
996
            my_pad = nn.Pad1D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
997
            result = my_pad(data)
L
littletomatodonkey 已提交
998
            print(result)
L
littletomatodonkey 已提交
999 1000 1001 1002
            # [[[0. 1. 2. 3. 0. 0.]
            #   [0. 4. 5. 6. 0. 0.]]]
    """

1003 1004 1005
    def __init__(
        self, padding, mode='constant', value=0.0, data_format="NCL", name=None
    ):
L
littletomatodonkey 已提交
1006
        super(Pad1D, self).__init__()
1007
        self._pad = _npairs(padding, 1)
L
littletomatodonkey 已提交
1008
        self._mode = mode
L
littletomatodonkey 已提交
1009
        self._value = value
L
littletomatodonkey 已提交
1010
        self._data_format = data_format
L
littletomatodonkey 已提交
1011 1012 1013
        self._name = name

    def forward(self, x):
1014 1015 1016 1017 1018 1019 1020 1021
        return F.pad(
            x,
            pad=self._pad,
            mode=self._mode,
            value=self._value,
            data_format=self._data_format,
            name=self._name,
        )
L
littletomatodonkey 已提交
1022

1023 1024 1025
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
1026 1027
            self._pad, self._mode, self._value, self._data_format, name_str
        )
1028

L
littletomatodonkey 已提交
1029

Z
zhiboniu 已提交
1030
class Pad2D(Layer):
L
littletomatodonkey 已提交
1031
    """
L
littletomatodonkey 已提交
1032 1033 1034 1035
    This interface is used to construct a callable object of the ``Pad2D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height dimension has the same condition.
L
littletomatodonkey 已提交
1036 1037

    Parameters:
1038
        padding (Tensor|list[int]|int): The padding size with data type int. If is int, use the
1039 1040
            same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded.
            The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'. Default is 'constant'.

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

        value (float, optional): The value to fill the padded areas. Default is :math:`0.0`。
        data_format (str, optional): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"。
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1052 1053

    Returns:
L
littletomatodonkey 已提交
1054 1055 1056 1057
        None

    Examples:
        .. code-block:: python
1058

L
littletomatodonkey 已提交
1059 1060
            import paddle
            import paddle.nn as nn
1061

L
littletomatodonkey 已提交
1062 1063
            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
L
littletomatodonkey 已提交
1064
            mode = "constant"
1065
            data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1
L
littletomatodonkey 已提交
1066
            my_pad = nn.Pad2D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1067
            result = my_pad(data)
L
littletomatodonkey 已提交
1068
            print(result)
L
littletomatodonkey 已提交
1069 1070 1071 1072 1073 1074 1075
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

1076 1077 1078
    def __init__(
        self, padding, mode='constant', value=0.0, data_format="NCHW", name=None
    ):
L
littletomatodonkey 已提交
1079
        super(Pad2D, self).__init__()
1080
        self._pad = _npairs(padding, 2)
L
littletomatodonkey 已提交
1081
        self._mode = mode
L
littletomatodonkey 已提交
1082 1083 1084 1085 1086
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
1087 1088 1089 1090 1091 1092 1093 1094
        return F.pad(
            x,
            pad=self._pad,
            mode=self._mode,
            value=self._value,
            data_format=self._data_format,
            name=self._name,
        )
L
littletomatodonkey 已提交
1095

1096 1097 1098
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
1099 1100
            self._pad, self._mode, self._value, self._data_format, name_str
        )
1101

L
littletomatodonkey 已提交
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
class ZeroPad2D(Layer):
    """
    This interface is used to construct a callable object of the ``ZeroPad2D`` class.
    Pads the input tensor boundaries with zero.

    Parameters:
        padding (Tensor | List[int] | int): The padding size with data type int. If is int, use the
            same padding in all dimensions. Else [len(padding)/2] dimensions of input will be padded.
            The pad has the form (pad_left, pad_right, pad_top, pad_bottom).
        data_format (str): An string from: "NCHW", "NHWC". Specify the data format of the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - x(Tensor): The input tensor of zeropad2d operator, which is a 4-D tensor.
          The data type can be float32, float64.
        - output(Tensor): The output tensor of zeropad2d operator, which is a 4-D tensor.
          The data type is same as input x.

    Examples:
        Examples are as follows.

        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import numpy as np

            input_shape = (1, 1, 2, 3)
            pad = [1, 0, 1, 2]
            data = paddle.arange(np.prod(input_shape), dtype="float32").reshape(input_shape) + 1

            my_pad = nn.ZeroPad2D(padding=pad)
            result = my_pad(data)

            print(result)
            # [[[[0. 0. 0. 0.]
            #    [0. 1. 2. 3.]
            #    [0. 4. 5. 6.]
            #    [0. 0. 0. 0.]
            #    [0. 0. 0. 0.]]]]
    """

    def __init__(self, padding, data_format="NCHW", name=None):
        super(ZeroPad2D, self).__init__()
        self._pad = _npairs(padding, 2)
        self._mode = 'constant'
1151
        self._value = 0.0
1152 1153 1154 1155
        self._data_format = data_format
        self._name = name

    def forward(self, x):
1156 1157 1158 1159 1160 1161 1162 1163
        return F.pad(
            x,
            pad=self._pad,
            mode=self._mode,
            value=self._value,
            data_format=self._data_format,
            name=self._name,
        )
1164 1165 1166

    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
1167 1168 1169
        return 'padding={}, data_format={}{}'.format(
            self._pad, self._data_format, name_str
        )
1170 1171


Z
zhiboniu 已提交
1172
class Pad3D(Layer):
L
littletomatodonkey 已提交
1173
    """
L
littletomatodonkey 已提交
1174 1175 1176 1177
    This interface is used to construct a callable object of the ``Pad3D`` class.
    Pad tensor according to 'pad', 'mode' and 'value'.
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.
L
littletomatodonkey 已提交
1178 1179

    Parameters:
1180
        padding (Tensor|list[int]|int): The padding size with data type int. If is int, use the
1181
            same padding in all dimensions. Else [len(padding)/2] dimensions
L
littletomatodonkey 已提交
1182
            of input will be padded. The pad has the form (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'. Default is 'constant'.

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

        value (float, optional): The value to fill the padded areas. Default is :math:`0.0`。
        data_format (str, optional): An string from: "NCDHW", "NDHWC". Specify the data format of the input data.
           Default is  "NCDHW"。
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1194 1195

    Returns:
L
littletomatodonkey 已提交
1196 1197 1198 1199
        None

    Examples:
        .. code-block:: python
1200

L
littletomatodonkey 已提交
1201 1202
            import paddle
            import paddle.nn as nn
1203

L
littletomatodonkey 已提交
1204 1205
            input_shape = (1, 1, 1, 2, 3)
            pad = [1, 0, 1, 2, 0, 0]
L
littletomatodonkey 已提交
1206
            mode = "constant"
1207
            data = paddle.arange(paddle.prod(paddle.to_tensor(input_shape)), dtype="float32").reshape(input_shape) + 1
L
littletomatodonkey 已提交
1208
            my_pad = nn.Pad3D(padding=pad, mode=mode)
L
littletomatodonkey 已提交
1209
            result = my_pad(data)
L
littletomatodonkey 已提交
1210
            print(result)
L
littletomatodonkey 已提交
1211 1212 1213 1214 1215 1216 1217
            # [[[[[0. 0. 0. 0.]
            #     [0. 1. 2. 3.]
            #     [0. 4. 5. 6.]
            #     [0. 0. 0. 0.]
            #     [0. 0. 0. 0.]]]]]
    """

1218 1219 1220 1221 1222 1223 1224 1225
    def __init__(
        self,
        padding,
        mode='constant',
        value=0.0,
        data_format="NCDHW",
        name=None,
    ):
L
littletomatodonkey 已提交
1226
        super(Pad3D, self).__init__()
1227
        self._pad = _npairs(padding, 3)
L
littletomatodonkey 已提交
1228
        self._mode = mode
L
littletomatodonkey 已提交
1229 1230 1231 1232 1233
        self._value = value
        self._data_format = data_format
        self._name = name

    def forward(self, x):
1234 1235 1236 1237 1238 1239 1240 1241
        return F.pad(
            x,
            pad=self._pad,
            mode=self._mode,
            value=self._value,
            data_format=self._data_format,
            name=self._name,
        )
L
littletomatodonkey 已提交
1242

1243 1244 1245
    def extra_repr(self):
        name_str = ', name={}'.format(self._name) if self._name else ''
        return 'padding={}, mode={}, value={}, data_format={}{}'.format(
1246 1247
            self._pad, self._mode, self._value, self._data_format, name_str
        )
1248

L
littletomatodonkey 已提交
1249

Z
zhiboniu 已提交
1250
class CosineSimilarity(Layer):
L
littletomatodonkey 已提交
1251
    """
1252
    This interface is used to compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1253 1254

    Parameters:
1255
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
1256
        eps(float): Small value to avoid division by zero. Default is 1e-8.
1257
    Returns:
L
littletomatodonkey 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
        None

    Examples:
        .. code-block:: text

            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
1272
                axis = 1
L
littletomatodonkey 已提交
1273 1274 1275 1276 1277
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1278

L
littletomatodonkey 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
            import paddle
            import paddle.nn as nn
            import numpy as np

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)

1289
            cos_sim_func = nn.CosineSimilarity(axis=0)
L
littletomatodonkey 已提交
1290
            result = cos_sim_func(x1, x2)
L
littletomatodonkey 已提交
1291
            print(result)
L
littletomatodonkey 已提交
1292 1293 1294
            # [0.99806249 0.9817672  0.94987036]
    """

1295
    def __init__(self, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1296
        super(CosineSimilarity, self).__init__()
1297
        self._axis = axis
L
littletomatodonkey 已提交
1298 1299 1300
        self._eps = eps

    def forward(self, x1, x2):
1301
        return F.cosine_similarity(x1, x2, axis=self._axis, eps=self._eps)
T
tangwei12 已提交
1302

1303 1304 1305
    def extra_repr(self):
        return 'axis={_axis}, eps={_eps}'.format(**self.__dict__)

T
tangwei12 已提交
1306

Z
zhiboniu 已提交
1307
class Embedding(Layer):
1308
    r"""
1309

1310
    Embedding Layer, used to construct a callable object of the ``Embedding`` class.
T
tangwei12 已提交
1311
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
T
tangwei12 已提交
1312
    This layer is used to lookup embeddings vector of ids provided by :attr:`x` .
T
tangwei12 已提交
1313
    It automatically constructs a 2D embedding matrix based on the
T
tangwei12 已提交
1314
    input :attr:`num_embeddings` and :attr:`embedding_dim`.
T
tangwei12 已提交
1315 1316 1317 1318

    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.

1319 1320 1321
    Note:
        The id in :attr:`x` must satisfy :math:`0 =< id < num_embeddings` ,
        otherwise the program will throw an exception and exit.
T
tangwei12 已提交
1322 1323 1324 1325 1326

    .. code-block:: text

        Case 1:

T
tangwei12 已提交
1327 1328 1329
        x is a Tensor. padding_idx = -1
            x.data = [[1, 3], [2, 4], [4, 127]
            x.shape = [3, 2]
T
tangwei12 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],

                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.

    Parameters:
        num_embeddings (int): Just one element which indicate the size
            of the dictionary of embeddings.
T
tangwei12 已提交
1347
        embedding_dim (int):  Just one element which indicate the size of each embedding vector respectively.
1348
        padding_idx(int|long|None, optional): padding_idx needs to be in the interval [-num_embeddings, num_embeddings).
T
tangwei12 已提交
1349 1350 1351 1352
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
1353
        sparse(bool, optional): The flag indicating whether to use sparse update. This parameter only
T
tangwei12 已提交
1354 1355
            affects the performance of the backwards gradient update. It is recommended to set
            True because sparse update is faster. But some optimizer does not support sparse update,
T
tangwei12 已提交
1356
            such as :ref:`api_paddle_optimizer_adadelta_Adadelta` , :ref:`api_paddle_optimizer_adamax_Adamax` , :ref:`api_paddle_optimizer_lamb_Lamb`.
T
tangwei12 已提交
1357
            In these case, sparse must be False. Default: False.
1358
        weight_attr(ParamAttr, optional): To specify the weight parameter property. Default: None, which means the
T
tangwei12 已提交
1359
            default weight parameter property is used. See usage for details in :ref:`api_ParamAttr` . In addition,
T
tangwei12 已提交
1360 1361
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tangwei12 已提交
1362 1363
            vector should be consistent with :attr:`num_embeddings` . Then :ref:`api_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example for details.
1364
        name(str|None, optional): For detailed information, please refer
T
tangwei12 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
               to :ref:`api_guide_Name`. Usually name is no need to set and
               None by default.

    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

    Returns:
        None

    Examples:

        .. code-block:: python

T
tangwei12 已提交
1378 1379 1380 1381 1382
            import paddle
            import numpy as np

            x_data = np.arange(3, 6).reshape((3, 1)).astype(np.int64)
            y_data = np.arange(6, 12).reshape((3, 2)).astype(np.float32)
T
tangwei12 已提交
1383

T
tangwei12 已提交
1384 1385 1386 1387 1388 1389 1390
            x = paddle.to_tensor(x_data, stop_gradient=False)
            y = paddle.to_tensor(y_data, stop_gradient=False)

            embedding = paddle.nn.Embedding(10, 3, sparse=True)

            w0=np.full(shape=(10, 3), fill_value=2).astype(np.float32)
            embedding.weight.set_value(w0)
T
tangwei12 已提交
1391

T
tangwei12 已提交
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
            adam = paddle.optimizer.Adam(parameters=[embedding.weight], learning_rate=0.01)
            adam.clear_grad()

            # weight.shape = [10, 3]

            # x.data = [[3],[4],[5]]
            # x.shape = [3, 1]

            # out.data = [[2,2,2], [2,2,2], [2,2,2]]
            # out.shape = [3, 1, 3]
            out=embedding(x)
            out.backward()
            adam.step()
T
tangwei12 已提交
1405 1406 1407

    """

1408 1409 1410 1411 1412 1413 1414 1415 1416
    def __init__(
        self,
        num_embeddings,
        embedding_dim,
        padding_idx=None,
        sparse=False,
        weight_attr=None,
        name=None,
    ):
T
tangwei12 已提交
1417 1418 1419 1420 1421
        super(Embedding, self).__init__()
        self._num_embeddings = num_embeddings
        self._embedding_dim = embedding_dim
        self._sparse = sparse
        self._is_distributed = False
1422
        self._padding_idx = padding_idx
T
tangwei12 已提交
1423 1424 1425 1426 1427 1428 1429

        if self._num_embeddings <= 0:
            raise ValueError("num_embeddings must be gather than 0")

        if self._embedding_dim <= 0:
            raise ValueError("embedding_dim must be gather than 0")

1430 1431 1432 1433 1434 1435 1436
        padding_idx = (
            -1
            if padding_idx is None
            else padding_idx
            if padding_idx >= 0
            else (num_embeddings + padding_idx)
        )
1437 1438

        if padding_idx >= num_embeddings or padding_idx < -num_embeddings:
1439 1440 1441 1442 1443
            raise ValueError(
                "padding_idx must be within [-{}, {})".format(
                    num_embeddings, num_embeddings
                )
            )
T
tangwei12 已提交
1444

T
tangwei12 已提交
1445 1446 1447 1448 1449 1450
        self._dtype = self._helper.get_default_dtype()
        self._size = [self._num_embeddings, self._embedding_dim]

        self._weight_attr = weight_attr
        self._remote_prefetch = False
        self._name = name
1451 1452 1453 1454 1455 1456
        self.weight = self.create_parameter(
            attr=self._weight_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False,
        )
T
tangwei12 已提交
1457

Z
zhiboniu 已提交
1458
        if in_dynamic_mode() and padding_idx != -1:
1459 1460
            with paddle.no_grad():
                self.weight[padding_idx] = 0.0
T
tangwei12 已提交
1461

T
tangwei12 已提交
1462
    def forward(self, x):
1463 1464 1465 1466 1467 1468 1469
        return F.embedding(
            x,
            weight=self.weight,
            padding_idx=self._padding_idx,
            sparse=self._sparse,
            name=self._name,
        )
1470 1471 1472 1473 1474 1475 1476 1477 1478

    def extra_repr(self):
        main_str = '{_num_embeddings}, {_embedding_dim}'
        if self._padding_idx is not None:
            main_str += ', padding_idx={_padding_idx}'
        main_str += ', sparse={_sparse}'
        if self._name is not None:
            main_str += ', name={_name}'
        return main_str.format(**self.__dict__)
F
FNRE 已提交
1479 1480


Z
zhiboniu 已提交
1481
class Unfold(Layer):
F
FNRE 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
    """
    This op returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    See ``paddle.nn.functional.unfold`` for more details.

1493

F
FNRE 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    Parameters:
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            x = paddle.randn((100,3,224,224))
            unfold = nn.Unfold(kernel_sizes=[3, 3])
            result = unfold(x)
            print(result)
X
xiaoting 已提交
1525
    """
F
FNRE 已提交
1526

1527 1528 1529
    def __init__(
        self, kernel_sizes, dilations=1, paddings=0, strides=1, name=None
    ):
F
FNRE 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538
        super(Unfold, self).__init__()

        self.kernel_sizes = kernel_sizes
        self.dilations = dilations
        self.paddings = paddings
        self.strides = strides
        self.name = name

    def forward(self, input):
1539 1540 1541 1542 1543 1544 1545 1546
        return F.unfold(
            input,
            kernel_sizes=self.kernel_sizes,
            strides=self.strides,
            paddings=self.paddings,
            dilations=self.dilations,
            name=self.name,
        )
F
FNRE 已提交
1547 1548 1549

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
1550 1551 1552 1553 1554 1555 1556
        return 'kernel_size={}, dilation={}, padding={}, stride={}{}'.format(
            self.kernel_sizes,
            self.dilations,
            self.paddings,
            self.strides,
            name_str,
        )
X
xiaoting 已提交
1557 1558 1559


class Fold(Layer):
1560
    r"""
X
xiaoting 已提交
1561

1562
    Combines an array of sliding local blocks into a large containing
1563 1564
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
1565 1566 1567 1568 1569 1570


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
1571

1572 1573 1574
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
1575 1576 1577 1578

    Parameters:
        output_sizes(list):       The size of output size, should be [output_size_h, output_size_w]
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
1579
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
1580
                                  or an integer k treated as [k, k].
1581
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
1582 1583
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
1584
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
1585 1586 1587 1588 1589 1590
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
1591
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn as nn

X
xiaoting 已提交
1610 1611
            x = paddle.randn([2,3*2*2,12])
            fold = nn.Fold(output_sizes=[4, 5], kernel_sizes=2)
X
xiaoting 已提交
1612
            y = fold(x)
X
xiaoting 已提交
1613
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
1614 1615
   """

1616 1617 1618 1619 1620 1621 1622 1623 1624
    def __init__(
        self,
        output_sizes,
        kernel_sizes,
        dilations=1,
        paddings=0,
        strides=1,
        name=None,
    ):
X
xiaoting 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
        super(Fold, self).__init__()

        self.output_sizes = output_sizes
        self.kernel_sizes = kernel_sizes
        self.dilations = dilations
        self.paddings = paddings
        self.strides = strides
        self.name = name

    def forward(self, input):
1635 1636 1637 1638 1639 1640 1641 1642 1643
        return F.fold(
            input,
            output_sizes=self.output_sizes,
            kernel_sizes=self.kernel_sizes,
            strides=self.strides,
            paddings=self.paddings,
            dilations=self.dilations,
            name=self.name,
        )
X
xiaoting 已提交
1644 1645 1646

    def extra_repr(self):
        name_str = ', name={}'.format(self.name) if self.name else ''
1647 1648 1649 1650 1651 1652 1653
        return 'kernel_size={}, dilation={}, padding={}, stride={}{}'.format(
            self.kernel_sizes,
            self.dilations,
            self.paddings,
            self.strides,
            name_str,
        )