test_elementwise_mul_op.py 11.8 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import unittest
16

17
import numpy as np
18 19
import paddle
import paddle.fluid as fluid
20
import paddle.fluid.core as core
21
from paddle.fluid import Program, program_guard
22

23 24 25 26 27
from paddle.fluid.tests.unittests.op_test import (
    OpTest,
    skip_check_grad_ci,
    convert_float_to_uint16,
)
28 29


G
gongweibao 已提交
30
class ElementwiseMulOp(OpTest):
31 32 33
    def init_kernel_type(self):
        self.use_mkldnn = False

34 35
    def setUp(self):
        self.op_type = "elementwise_mul"
36
        self.dtype = np.float64
37 38 39 40 41 42
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

43
        self.inputs = {
44
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
45
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
46
        }
47 48
        self.outputs = {'Out': self.out}
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
49 50

    def test_check_output(self):
51 52
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output(check_dygraph=(self.use_mkldnn == False))
53 54

    def test_check_grad_normal(self):
55
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
56 57 58
        self.check_grad(
            ['X', 'Y'], 'Out', check_dygraph=(self.use_mkldnn == False)
        )
59 60

    def test_check_grad_ingore_x(self):
61
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
62 63 64 65 66 67
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            check_dygraph=(self.use_mkldnn == False),
        )
68 69

    def test_check_grad_ingore_y(self):
70
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
71 72 73 74 75 76
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            check_dygraph=(self.use_mkldnn == False),
        )
77

78 79 80 81 82 83 84 85 86 87 88
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

    def init_dtype(self):
        pass

    def init_axis(self):
        pass

89

90 91 92 93 94 95 96 97 98 99 100 101
class TestBF16ElementwiseMulOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.dtype = np.uint16

        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        self.out = np.multiply(self.x, self.y)

        self.axis = -1

        self.inputs = {
102 103 104 105 106 107
            'X': OpTest.np_dtype_to_fluid_dtype(
                convert_float_to_uint16(self.x)
            ),
            'Y': OpTest.np_dtype_to_fluid_dtype(
                convert_float_to_uint16(self.y)
            ),
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        }
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.attrs = {'axis': self.axis, 'use_mkldnn': False}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


125
@skip_check_grad_ci(
126 127
    reason="[skip shape check] Use y_shape(1) to test broadcast."
)
128 129 130 131
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
132
            'X': np.random.rand(10, 3, 4).astype(np.float64),
133
            'Y': np.random.rand(1).astype(np.float64),
134 135
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
136
        self.init_kernel_type()
137 138


G
gongweibao 已提交
139
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
140 141 142
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
143 144
            'X': np.random.random((100,)).astype("float64"),
            'Y': np.random.random((100,)).astype("float64"),
145 146
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
147
        self.init_kernel_type()
148 149


G
gongweibao 已提交
150
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
151
    def init_input_output(self):
152 153 154
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x * self.y.reshape(100, 1, 1)
155

156 157
    def init_axis(self):
        self.axis = 0
158 159


G
gongweibao 已提交
160
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
161 162 163
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
164
            'X': np.random.rand(2, 100, 3).astype(np.float64),
165
            'Y': np.random.rand(100).astype(np.float64),
166 167 168 169
        }

        self.attrs = {'axis': 1}
        self.outputs = {
170
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 100, 1)
171
        }
172
        self.init_kernel_type()
173 174


G
gongweibao 已提交
175
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
176 177 178
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
179
            'X': np.random.rand(2, 3, 100).astype(np.float64),
180
            'Y': np.random.rand(100).astype(np.float64),
181 182 183
        }

        self.outputs = {
184
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 100)
185
        }
186
        self.init_kernel_type()
187 188


G
gongweibao 已提交
189
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
190 191 192
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
193
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
194
            'Y': np.random.rand(10, 12).astype(np.float64),
195 196 197 198
        }

        self.attrs = {'axis': 1}
        self.outputs = {
199
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 10, 12, 1)
200
        }
201
        self.init_kernel_type()
202 203


204 205 206 207
class TestElementwiseMulOp_broadcast_4(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
208
            'X': np.random.rand(10, 2, 11).astype(np.float64),
209
            'Y': np.random.rand(10, 1, 11).astype(np.float64),
210 211
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
212
        self.init_kernel_type()
213 214 215 216 217 218


class TestElementwiseMulOp_broadcast_5(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
219
            'X': np.random.rand(10, 4, 2, 3).astype(np.float64),
220
            'Y': np.random.rand(10, 4, 1, 3).astype(np.float64),
221 222
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
223
        self.init_kernel_type()
224 225


226 227 228
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
W
Wu Yi 已提交
229 230 231 232 233
class TestElementwiseMulOpFp16(ElementwiseMulOp):
    def init_dtype(self):
        self.dtype = np.float16


234 235 236 237
class TestElementwiseMulOp_commonuse_1(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
238
            'X': np.random.rand(2, 3, 100).astype(np.float64),
239
            'Y': np.random.rand(1, 1, 100).astype(np.float64),
240 241
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
242
        self.init_kernel_type()
243 244 245 246 247 248


class TestElementwiseMulOp_commonuse_2(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
249
            'X': np.random.rand(30, 3, 1, 5).astype(np.float64),
250
            'Y': np.random.rand(30, 1, 4, 1).astype(np.float64),
251 252
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
253
        self.init_kernel_type()
254 255 256 257 258 259


class TestElementwiseMulOp_xsize_lessthan_ysize(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
260
            'X': np.random.rand(10, 10).astype(np.float64),
261
            'Y': np.random.rand(2, 2, 10, 10).astype(np.float64),
262 263 264 265 266
        }

        self.attrs = {'axis': 2}

        self.outputs = {
267
            'Out': self.inputs['X'].reshape(1, 1, 10, 10) * self.inputs['Y']
268
        }
269
        self.init_kernel_type()
270 271


272
class TestElementwiseMulOpError(unittest.TestCase):
273 274 275
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of elementwise_mul must be Variable.
276 277 278 279 280 281
            x1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
            )
            y1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
            )
282 283 284 285 286 287 288 289 290
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x1, y1)

            # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64
            # float16 only can be set on GPU place
            x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="uint8")
            y2 = fluid.layers.data(name='y2', shape=[3, 4, 5, 6], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x2, y2)


291 292 293 294 295 296 297 298 299
class TestComplexElementwiseMulOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
300
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
301 302 303 304 305 306 307 308
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
309 310 311 312 313 314
        self.x = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
315 316 317
        self.out = self.x * self.y

    def init_grad_input_output(self):
318 319 320
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1j * np.ones(
            (2, 3, 4, 5), self.dtype
        )
321 322 323 324 325 326 327
        self.grad_x = self.grad_out * np.conj(self.y)
        self.grad_y = self.grad_out * np.conj(self.x)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
328 329 330 331 332 333
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
334 335

    def test_check_grad_ingore_x(self):
336 337 338 339 340 341 342
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out],
        )
343 344

    def test_check_grad_ingore_y(self):
345 346 347 348 349 350 351
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out],
        )
352 353


C
chentianyu03 已提交
354 355 356
class TestRealComplexElementwiseMulOp(TestComplexElementwiseMulOp):
    def init_input_output(self):
        self.x = np.random.random((2, 3, 4, 5)).astype(self.dtype)
357 358 359
        self.y = np.random.random((2, 3, 4, 5)).astype(
            self.dtype
        ) + 1j * np.random.random((2, 3, 4, 5)).astype(self.dtype)
C
chentianyu03 已提交
360 361 362
        self.out = self.x * self.y

    def init_grad_input_output(self):
363 364 365
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1j * np.ones(
            (2, 3, 4, 5), self.dtype
        )
C
chentianyu03 已提交
366 367 368 369
        self.grad_x = np.real(self.grad_out * np.conj(self.y))
        self.grad_y = self.grad_out * np.conj(self.x)


370
if __name__ == '__main__':
371
    paddle.enable_static()
372
    unittest.main()