io.py 34.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import multiprocessing
P
peizhilin 已提交
16
import os
M
minqiyang 已提交
17
import six
18
import sys
Y
yuyang18 已提交
19
import threading
D
dzhwinter 已提交
20

Y
yuyang18 已提交
21
from ..data_feeder import DataFeeder
22 23
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
24
from .. import core
Y
Refine  
Yu Yang 已提交
25
from ..executor import global_scope
26 27 28 29 30 31 32 33
from ..framework import (
    convert_np_dtype_to_dtype_,
    default_main_program,
    default_startup_program,
    program_guard,
    Program,
    Variable,
)
Y
yuyang18 已提交
34 35
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
36

37
import logging
38
from ..data_feeder import check_dtype, check_type
39
from paddle.fluid.framework import static_only
40 41 42 43 44
from ..framework import (
    _get_paddle_place,
    _current_expected_place,
    _set_expected_place,
)
Y
Yu Yang 已提交
45

Y
Yu Yang 已提交
46
__all__ = [
47 48 49 50 51 52
    'data',
    'read_file',
    'double_buffer',
    'py_reader',
    'create_py_reader_by_data',
    'load',
Y
Yu Yang 已提交
53
]
Y
Yu Yang 已提交
54 55


56
@static_only
57 58 59 60 61 62 63 64 65
def data(
    name,
    shape,
    append_batch_size=True,
    dtype='float32',
    lod_level=0,
    type=core.VarDesc.VarType.LOD_TENSOR,
    stop_gradient=True,
):
Y
Yu Yang 已提交
66
    """
K
kavyasrinet 已提交
67
    **Data Layer**
Y
Yu Yang 已提交
68

G
guofei 已提交
69 70
    This operator creates the global variable. The global variables can be
    accessed by all the following operators in the graph.
Y
Yu Yang 已提交
71

72 73
    Note:
        :code:`paddle.fluid.layers.data` is deprecated as it will be removed in
G
guofei 已提交
74
        a later version. Please use :code:`paddle.fluid.data` .
Y
Yu Yang 已提交
75

76
        This :code:`paddle.fluid.layers.data` set shape and dtype at compile
T
tianshuo78520a 已提交
77
        time but does NOT check the shape or the dtype of fed data, the
78
        :code:`paddle.fluid.data` checks the shape and the dtype of data fed
G
guofei 已提交
79
        by Executor or ParallelExecutor during run time.
80

81 82 83 84 85 86 87 88 89 90
        To feed variable size inputs, users can feed variable size inputs
        directly to this :code:`paddle.fluid.layers.data` and PaddlePaddle will
        fit the size accordingly. Or set -1 on the variable dimension when using
        :code:`paddle.fluid.data` .

        The default :code:`stop_gradient` attribute of the Variable created by
        this API is true, which means the gradient won't be passed backward
        through the data Varaible. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

K
kavyasrinet 已提交
91
    Args:
G
guofei 已提交
92 93
       name(str): The name/alias of the variable, see :ref:`api_guide_Name`
            for more details.
94
       shape(list|tuple): Tuple declaring the shape. If :code:`append_batch_size` is
95
            True and there is no -1 inside :code:`shape`, it should be
G
guofei 已提交
96
            considered as the shape of the each sample. Otherwise, it should
97
            be considered as the shape of the batched data.
X
Xin Pan 已提交
98 99
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
100
            For example if shape=[1], the resulting shape is [-1, 1]. This will
101 102 103 104 105
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
G
guofei 已提交
106 107 108
       dtype(np.dtype|VarType|str): The type of the data. Supported dtype: bool,
            float16, float32, float64, int8, int16, int32, int64, uint8.
       type(VarType): The output type. Supported dtype: VarType.LOD_TENSOR,
109
            VarType.SELECTED_ROWS, VarType.NCCL_ID. Default: VarType.LOD_TENSOR.
K
kavyasrinet 已提交
110
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
G
guofei 已提交
111
            Default: 0.
K
kavyasrinet 已提交
112
       stop_gradient(bool): A boolean that mentions whether gradient should flow.
113
            Default: True.
K
kavyasrinet 已提交
114 115

    Returns:
G
guofei 已提交
116 117 118 119
        The global variable that gives access to the data.

    Return Type:
        Variable
K
kavyasrinet 已提交
120 121 122 123

    Examples:
        .. code-block:: python

124
          import paddle.fluid as fluid
K
kavyasrinet 已提交
125
          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
126 127
    """
    helper = LayerHelper('data', **locals())
128

129
    check_type(name, 'name', (bytes, str), 'data')
130 131
    check_type(shape, 'shape', (list, tuple), 'data')

Y
Yu Yang 已提交
132
    shape = list(shape)
133
    for i in range(len(shape)):
Y
Yu Yang 已提交
134 135 136 137 138 139 140 141 142
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

143 144 145 146 147 148 149 150 151
    data_var = helper.create_global_variable(
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
        lod_level=lod_level,
        is_data=True,
    )
Y
Yu Yang 已提交
152
    return data_var
T
typhoonzero 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
178
    **ListenAndServ Layer**
T
typhoonzero 已提交
179

Y
yi.wu 已提交
180 181 182 183 184 185 186 187 188
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
189

Y
yi.wu 已提交
190 191 192
    Examples:
        .. code-block:: python

193
            import paddle.fluid as fluid
Y
yi.wu 已提交
194 195 196 197 198 199 200 201 202 203 204 205
            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
206 207
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
208 209
    """

Y
Yancey1989 已提交
210
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
211
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
212
        self.inputs = inputs
T
typhoonzero 已提交
213 214 215
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
216 217
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
218
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
232 233 234 235 236 237 238 239
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
240 241
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
242 243 244

        return params, grads

T
typhoonzero 已提交
245 246 247 248 249 250 251
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
252
    def complete_op(self):
253 254
        from ..incubate.fleet.parameter_server.mode import DistributedMode

T
typhoonzero 已提交
255 256 257 258 259
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
260
            type='listen_and_serv',
Y
Yancey1989 已提交
261
            inputs={"X": self.inputs},
T
typhoonzero 已提交
262 263 264 265
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
266 267 268 269 270 271 272
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
                'distributed_mode': DistributedMode.SYNC,  # did not support async now in layers
                'grad_to_block_id': [""],
            },
        )
T
typhoonzero 已提交
273 274


275
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
276
    """
Y
yi.wu 已提交
277 278
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
279 280

    Args:
T
tianshuo78520a 已提交
281
        endpoints (str): comma separated IP:PORT pairs in the order
T
typhoonzero 已提交
282
                   of send_vars to send
Y
yi.wu 已提交
283 284
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
285 286

    """
287
    assert type(send_vars) == list
T
typhoonzero 已提交
288

289 290 291 292 293
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

294
    assert type(dummy_output) == list
295

T
typhoonzero 已提交
296
    epmap = endpoints.split(",")
T
typhoonzero 已提交
297
    endpoints = list(set(epmap))
T
typhoonzero 已提交
298 299

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
300
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
301

302 303 304 305 306 307 308 309 310 311
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
        outputs={"Out": dummy_output},
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC,
        },
    )
Y
yi.wu 已提交
312
    if sync:
313 314 315 316 317 318
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints},
        )
319 320


321
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
322
    """
Y
yi.wu 已提交
323
    Receive variables from server side
324 325

    Args:
T
tianshuo78520a 已提交
326
        endpoints (str): comma separated IP:PORT pairs in the order
327
                   of send_vars to send
Y
yi.wu 已提交
328 329
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
330

Y
yi.wu 已提交
331 332
    Returns:
        list: list of received variables
333
    """
334
    assert type(get_vars) == list
335

336 337 338 339 340
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

341
    assert type(dummy_input) == list
342

343 344 345 346
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
347 348 349 350 351 352
    helper.append_op(
        type="recv",
        inputs={"X": dummy_input},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints, "epmap": epmap},
    )
Y
yi.wu 已提交
353
    if sync:
354 355 356 357 358
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints},
        )
Y
yi.wu 已提交
359
    return get_vars
Y
Yu Yang 已提交
360 361


Y
Refine  
Yu Yang 已提交
362 363 364 365 366 367 368 369 370 371
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
372 373
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
374 375 376
    return reader


Y
Yu Yang 已提交
377 378 379 380
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
381
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
382
    new_var.persistable = True
F
fengjiayi 已提交
383 384 385 386
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

403 404 405 406 407 408
    new_op = block.append_op(
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
        attrs=op.all_attrs(),
    )
F
fengjiayi 已提交
409
    return new_op
Y
Yu Yang 已提交
410 411


412 413 414 415 416 417 418 419 420
def _py_reader(
    capacity,
    shapes,
    dtypes,
    lod_levels=None,
    name=None,
    use_double_buffer=True,
    feed_list=None,
):
Q
Qiao Longfei 已提交
421 422
    if feed_list is not None:
        if not isinstance(feed_list, list):
423 424 425 426
            raise TypeError(
                "feed_list should be a list of Variable"
                " instead of " + str(type(feed_list))
            )
Q
Qiao Longfei 已提交
427 428 429 430 431
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
432
        need_check_feed = []
Q
Qiao Longfei 已提交
433

Q
Qiao Longfei 已提交
434 435 436 437 438 439
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
440
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
Q
Qiao Longfei 已提交
441 442
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
443
        need_check_feed = [0 for dt in dtypes]
Q
Qiao Longfei 已提交
444 445 446 447 448 449 450 451 452
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)
453
    dtype_int = [int(t) for t in dtypes]
Q
Qiao Longfei 已提交
454 455 456 457 458 459 460 461 462 463
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
464
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, False)
Q
Qiao Longfei 已提交
465 466 467

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
468 469 470 471 472 473 474 475 476 477 478 479
    startup_blk.append_op(
        type='create_py_reader',
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'dtypes': dtype_int,
            'need_check_feed': need_check_feed,
            'ranks': ranks,
        },
    )
Q
Qiao Longfei 已提交
480 481 482 483

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

484 485 486
    main_prog_var = _copy_reader_var_(
        default_main_program().current_block(), startup_var
    )
Q
Qiao Longfei 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
504
        def __provider_thread__(legacy_expected_place):
S
sneaxiy 已提交
505
            try:
506
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
L
Leo Chen 已提交
507

508 509
                _set_expected_place(legacy_expected_place)

S
sneaxiy 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
            except Exception as ex:
Z
Zeng Jinle 已提交
527
                feed_queue.kill()
528
                logging.warn('Your decorated reader has raised an exception!')
529
                six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
530

531 532 533
        reader.thread = threading.Thread(
            target=__provider_thread__, args=(_current_expected_place(),)
        )
Q
Qiao Longfei 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
549 550 551 552 553 554 555
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level,
                        )
                    )
Q
Qiao Longfei 已提交
556 557
                    counter += 1

Q
Qiao Longfei 已提交
558
            data_names = [feed_data.name for feed_data in actual_feed_list]
559 560 561 562 563 564
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace()
            )
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False
            )
Q
Qiao Longfei 已提交
565 566 567

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
568
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
585 586 587

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
588 589 590 591 592
    reader.start = __start__

    return reader


593 594 595
def py_reader(
    capacity, shapes, dtypes, lod_levels=None, name=None, use_double_buffer=True
):
S
sneaxiy 已提交
596
    """
597
        :api_attr: Static Graph
S
swtkiwi 已提交
598

599
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
600

G
guofei 已提交
601
    This operator returns a Reader Variable.
602 603
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
604 605
    source and feed the data from the data source to the Reader Variable.
    When :code:`Executor::Run()` is invoked in C++ side, the data from the
G
guofei 已提交
606
    generator would be read automatically. Unlike :code:`DataFeeder.feed()`,
607
    the data reading process and :code:`Executor::Run()` process can run in
G
guofei 已提交
608
    parallel using :code:`py_reader`. The :code:`start()` method of the Reader
609
    should be called when each pass begins, while the :code:`reset()` method
G
guofei 已提交
610 611 612
    should be called when the pass ends and :code:`fluid.core.EOFException` raises.

    Note:
613
       :code:`Program.clone()` method cannot clone :code:`py_reader`. You can
G
guofei 已提交
614
       refer to :ref:`api_fluid_Program` for more details.
615

G
guofei 已提交
616 617
       The :code:`read_file` call needs to be in the program block of :code:`py_reader`.
       You can refer to :ref:`api_fluid_layers_read_file` for more details.
S
sneaxiy 已提交
618 619

    Args:
620
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
621
       shapes(list|tuple): List of tuples which declaring data shapes. shapes[i]
G
guofei 已提交
622 623 624
            represents the i-th data shape.
       dtypes(list|tuple): List of strings which declaring data type. Supported dtype:
            bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
625
       lod_levels(list|tuple): List of ints which declaring data lod_level.
G
guofei 已提交
626 627 628
       name(basestring): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
629 630
       use_double_buffer(bool): Whether use double buffer or not. The double buffer is
            for pre-reading the data of the next batch and copy the data asynchronously
G
guofei 已提交
631
            from CPU to GPU. Default is True.
S
sneaxiy 已提交
632 633

    Returns:
G
guofei 已提交
634 635 636 637
       A Reader from which we can get feeding data.

    Return Type:
       Variable
S
sneaxiy 已提交
638 639

    Examples:
640
       1. The basic usage of :code:`py_reader` is as follows:
641

642
       .. code-block:: python
643

644 645 646 647 648
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
T
tianshuo78520a 已提交
649
             # user defined network, here a softmax regession example
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
H
Huihuang Zheng 已提交
667 668 669 670 671
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
672 673 674 675 676 677 678 679

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
680

681
       .. code-block:: python
682

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
H
Huihuang Zheng 已提交
706 707
                     paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                           buf_size=500))
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
748
    """
749 750
    logging.warn(
        'paddle.fluid.layers.py_reader() may be deprecated in the near future. '
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.'
    )
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
        use_double_buffer=use_double_buffer,
    )


def create_py_reader_by_data(
    capacity, feed_list, name=None, use_double_buffer=True
):
Q
Qiao Longfei 已提交
766
    """
767
        :api_attr: Static Graph
S
swtkiwi 已提交
768

769 770 771 772 773 774 775 776 777 778 779 780 781
    The OP creates a Python reader for data feeding in Python, it is similar
    to :ref:`api_fluid_layers_py_reader` except that it can read data from
    the list of feed variables.

    Parameters:
        capacity (int): The buffer capacity maintained by :code:`py_reader`. Its unit
            is batch number. Set larger :attr:`capacity` if the reader is fast.
        feed_list (list(Variable)): The feed variables, are usually created by
            :code:`fluid.data()`.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`. Default: None.
        use_double_buffer (bool, optional): Whether use double buffer. If it's True,
            the OP would prefetch next batch data asynchronously. Default: True.
Q
Qiao Longfei 已提交
782

Q
Qiao Longfei 已提交
783
    Returns:
784
        Reader: A Reader for data feeding. The data types of read data are the same as the data types of variables of :attr:`feed_list`.
Q
Qiao Longfei 已提交
785

Q
Qiao Longfei 已提交
786
    Examples:
787
        .. code-block:: python
788

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
          import paddle
          import paddle.fluid as fluid
          import paddle.dataset.mnist as mnist

          def network(img, label):
              # User defined network. Here a simple regression as example
              predict = fluid.layers.fc(input=img, size=10, act='softmax')
              loss = fluid.layers.cross_entropy(input=predict, label=label)
              return fluid.layers.mean(loss)

          MEMORY_OPT = False
          USE_CUDA = False

          image = fluid.data(name='image', shape=[None, 1, 28, 28], dtype='float32')
          label = fluid.data(name='label', shape=[None, 1], dtype='int64')
          reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                         feed_list=[image, label])
          reader.decorate_paddle_reader(
              paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5), buf_size=500))
          img, label = fluid.layers.read_file(reader)
T
tianshuo78520a 已提交
809
          loss = network(img, label) # The definition of custom network and the loss function
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

          place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())

          build_strategy = fluid.BuildStrategy()
          build_strategy.memory_optimize = True if MEMORY_OPT else False
          exec_strategy = fluid.ExecutionStrategy()
          compiled_prog = fluid.compiler.CompiledProgram(
          fluid.default_main_program()).with_data_parallel(
              loss_name=loss.name,
              build_strategy=build_strategy,
              exec_strategy=exec_strategy)

          for epoch_id in range(2):
          reader.start()
          try:
              while True:
                  exe.run(compiled_prog, fetch_list=[loss.name])
          except fluid.core.EOFException:
              reader.reset()
Q
Qiao Longfei 已提交
831
    """
832 833
    logging.warn(
        'paddle.fluid.layers.create_py_reader_by_data() may be deprecated in the near future. '
834 835 836 837 838 839 840 841 842 843 844
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.'
    )
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list,
    )
S
sneaxiy 已提交
845 846


J
JiayiFeng 已提交
847
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
848 849 850
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
851 852 853 854 855 856
    startop_op = startup_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs,
    )
Y
Yu Yang 已提交
857
    startup_var.persistable = True
F
fengjiayi 已提交
858 859 860 861
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
862 863


864 865
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
866 867
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
868 869 870 871 872 873
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs,
    )
874 875 876
    return monkey_patch_reader_methods(new_reader)


877
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
878
    """
L
liu zhengxi 已提交
879
    Wrap a double buffer reader. The class Reader contains DecoratedReader and FileReader. Moreover, the DecoratedReader is inherited by CustomReader and BufferedReader. This function is related to BufferedReader. The data will copy to target place with a double buffer queue. If the target place is None, the place that executor perform on will be used.
Y
yuyang18 已提交
880 881


L
liu zhengxi 已提交
882 883
    Args:
        reader (Variable): The Reader Variable need to be wrapped.
884
        place (Place|str, optional): The place of target data, such as CPU, GPU, and if use GPU, it's necessary to point out which card is involved. Default is the sample place of executor perform.
885 886
            if ``place`` is string, It can be ``cpu``, ``gpu:x``, where ``x`` is the ndex of the GPUs.
        name (str, optional): Variable name. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
Y
yuyang18 已提交
887 888

    Returns:
L
liu zhengxi 已提交
889
        Variable(Reader): wrapped reader with double buffer.
Y
yuyang18 已提交
890 891

    Examples:
L
liu zhengxi 已提交
892
        ..  code-block:: python
893

L
liu zhengxi 已提交
894 895 896 897 898 899 900
            import paddle.fluid as fluid
            reader = fluid.layers.py_reader(capacity=64,
                                            shapes=[(-1, 1, 28, 28), (-1, 1)],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=False)
            reader = fluid.layers.double_buffer(reader)
            image, label = fluid.layers.read_file(reader)
Y
yuyang18 已提交
901
    """
Y
Yu Yang 已提交
902 903
    attrs = dict()
    if place is not None:
904 905
        attrs['place'] = str(_get_paddle_place(place)).upper()

906 907 908
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name
    )
Y
Yu Yang 已提交
909 910


F
fengjiayi 已提交
911
def read_file(reader):
F
fengjiayi 已提交
912
    """
913
        :api_attr: Static Graph
S
swtkiwi 已提交
914

F
fengjiayi 已提交
915
    Execute the given reader and get data via it.
F
fengjiayi 已提交
916

917 918
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
919
    `fluid.layers.double_buffer()` .
F
fengjiayi 已提交
920 921 922

    Args:

F
fengjiayi 已提交
923
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
924 925

    Returns:
926
        Tuple[Variable]: Data read from the given reader.
F
fengjiayi 已提交
927 928 929

    Examples:
        .. code-block:: python
930

931
           import paddle.fluid as fluid
932 933 934 935
           reader = fluid.layers.py_reader(capacity=64,
                                           shapes=[(-1, 1, 28, 28), (-1, 1)],
                                           dtypes=['float32', 'int64'])
           image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
936
    """
Y
Yu Yang 已提交
937 938
    helper = LayerHelper('read_file')
    out = [
939 940 941
        helper.create_variable_for_type_inference(
            stop_gradient=True, dtype='float32'
        )
F
fengjiayi 已提交
942
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
943
    ]
944 945 946
    helper.append_op(
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out}
    )
Y
Yu Yang 已提交
947 948 949 950
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
951 952


Y
yuyang18 已提交
953 954
def load(out, file_path, load_as_fp16=None):
    """
955
    Load operator will load a LoDTensor / SelectedRows variable from disk file.
Y
yuyang18 已提交
956 957

    Args:
958
        out(Variable): The LoDTensor / SelectedRows need to be loaded..
Y
yuyang18 已提交
959

960
        file_path(STRING): Variable will be loaded from "file_path".
Y
yuyang18 已提交
961

962
        load_as_fp16(BOOLEAN): If true, the tensor will be first loaded and then converted to float16 data type. Otherwise, the tensor will be directly loaded without data type conversion. Default is false..
Y
yuyang18 已提交
963 964
    Returns:
        None
965 966 967 968 969 970 971

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            tmp_tensor = fluid.layers.create_tensor(dtype='float32')
            fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Y
yuyang18 已提交
972 973 974 975 976
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
977
    helper.append_op(type="load", inputs={}, outputs={"Out": out}, attrs=attrs)