Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d36e13ef
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d36e13ef
编写于
7月 14, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'feature/add_pyreader_demo' into feature/combine_open_files_and_double_buffer
上级
1478a5fc
c9cf2bdb
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
169 addition
and
29 deletion
+169
-29
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+7
-1
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
+1
-1
paddle/fluid/operators/reader/open_files_op.cc
paddle/fluid/operators/reader/open_files_op.cc
+4
-12
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+34
-15
python/paddle/fluid/tests/demo/pyreader.py
python/paddle/fluid/tests/demo/pyreader.py
+123
-0
未找到文件。
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
d36e13ef
...
...
@@ -168,7 +168,13 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
for
(
size_t
i
=
0
;
i
<
fetch_tensors
.
size
();
++
i
)
{
auto
&
var_name
=
fetch_tensors
[
i
];
auto
&
vars
=
fetched_vars
.
at
(
var_name
);
auto
fetched_var_it
=
fetched_vars
.
find
(
var_name
);
PADDLE_ENFORCE
(
fetched_var_it
!=
fetched_vars
.
end
(),
"Cannot find fetched variable.(Perhaps the main_program "
"is not set to ParallelExecutor)"
);
auto
&
vars
=
fetched_var_it
->
second
;
auto
*
op
=
new
FetchOpHandle
(
fetch_data
,
i
,
&
local_scopes_
);
fetch_ops
->
emplace_back
(
op
);
...
...
paddle/fluid/operators/reader/create_shuffle_reader_op.cc
浏览文件 @
d36e13ef
...
...
@@ -48,9 +48,9 @@ class ShuffleReader : public framework::DecoratedReader {
private:
void
ShutdownImpl
()
override
{
reader_
->
Shutdown
();
buffer_
.
clear
();
iteration_pos_
=
0
;
reader_
->
Shutdown
();
}
void
StartImpl
()
override
{
...
...
paddle/fluid/operators/reader/open_files_op.cc
浏览文件 @
d36e13ef
...
...
@@ -18,7 +18,6 @@
#include "ThreadPool.h"
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/operators/reader/buffered_reader.h"
#include "paddle/fluid/operators/reader/reader_op_registry.h"
namespace
paddle
{
...
...
@@ -233,17 +232,12 @@ class OpenFilesOp : public framework::OperatorBase {
container
.
reset
(
new
OrderedReaderContainer
());
}
else
{
container
.
reset
(
new
PreemptiveReaderContainer
(
static_cast
<
size_t
>
(
Attr
<
int
>
(
"thread_num"
))));
std
::
min
(
file_names
.
size
(),
static_cast
<
size_t
>
(
std
::
thread
::
hardware_concurrency
()))));
}
auto
reader
=
std
::
make_shared
<
MultiFileReader
>
(
file_names
,
std
::
move
(
container
));
auto
buffer_size
=
Attr
<
int
>
(
"buffer_size"
);
if
(
buffer_size
>
1
)
{
reader
=
framework
::
MakeDecoratedReader
<
BufferedReader
>
(
reader
,
platform
::
CPUPlace
(),
buffer_size
);
}
out
->
Reset
(
reader
);
out
->
Reset
(
std
::
make_shared
<
MultiFileReader
>
(
file_names
,
std
::
move
(
container
)));
}
};
...
...
@@ -259,8 +253,6 @@ class OpenFilesOpMaker : public FileReaderMakerBase {
An OpenFilesOp creates a MultiFileReader, which is able to
read data multi-threaded from multiple files.
)DOC"
);
AddAttr
<
int
>
(
"thread_num"
,
"Number of thread to read files."
);
AddAttr
<
int
>
(
"buffer_size"
,
"The reading buffer of these files."
);
}
};
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
d36e13ef
...
...
@@ -12,16 +12,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
contextlib
import
multiprocessing
from
..
import
core
from
..framework
import
convert_np_dtype_to_dtype_
,
default_main_program
,
default_startup_program
,
Program
from
..unique_name
import
generate
as
unique_name
from
control_flow
import
BlockGuard
from
..layer_helper
import
LayerHelper
from
layer_function_generator
import
templatedoc
from
..
import
core
from
..executor
import
global_scope
from
layer_function_generator
import
generate_layer_fn
,
templatedoc
import
sys
import
multiprocessing
from
..framework
import
convert_np_dtype_to_dtype_
,
default_main_program
,
\
default_startup_program
from
..layer_helper
import
LayerHelper
from
..unique_name
import
generate
as
unique_name
__all__
=
[
'data'
,
'BlockGuardServ'
,
'ListenAndServ'
,
'Send'
,
'Recv'
,
...
...
@@ -448,7 +448,12 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
return
monkey_patch_reader_methods
(
main_prog_var
)
def
py_reader
(
capacity
,
shapes
,
dtypes
,
lod_levels
=
None
):
def
py_reader
(
capacity
,
shapes
,
dtypes
,
lod_levels
=
None
,
name
=
None
,
use_double_buffer
=
True
):
"""
Create a reader and blocking queue for data feeding in Python
...
...
@@ -461,10 +466,13 @@ def py_reader(capacity, shapes, dtypes, lod_levels=None):
using `close()` method when unused.
Args:
use_double_buffer(bool): Whether use double buffer or not.
capacity(int): The maximum capacity of the BlockingQueue.
shapes(list): List of tuples which declaring data shapes.
dtypes(list): List of strs which declaring data type.
lod_levels(list): List of ints which declaring data lod_level.
shapes(list|tuple): List of tuples which declaring data shapes.
dtypes(list|tuple): List of strs which declaring data type.
lod_levels(list|tuple): List of ints which declaring data lod_level.
name(basestring): The prefix Python queue name and Reader name. None will
be generated automatically.
Returns:
tuple(Variable, BlockingQueue):
...
...
@@ -505,15 +513,23 @@ def py_reader(capacity, shapes, dtypes, lod_levels=None):
if
lod_levels
is
None
:
lod_levels
=
[
0
]
*
len
(
shapes
)
queue_name
=
unique_name
(
'lod_tensor_blocking_queue'
)
if
name
is
None
:
queue_name
=
unique_name
(
'lod_tensor_blocking_queue'
)
reader_name
=
unique_name
(
'create_py_reader'
)
double_buffer_name
=
unique_name
(
'double_buffer'
)
else
:
queue_name
=
"_"
.
join
([
name
,
"queue"
])
reader_name
=
"_"
.
join
([
name
,
"reader"
])
double_buffer_name
=
"_"
.
join
([
name
,
"double_buffer"
])
var
=
global_scope
().
var
(
queue_name
)
feed_queue
=
core
.
init_lod_tensor_blocking_queue
(
var
,
capacity
,
shapes
)
startup_blk
=
default_startup_program
().
current_block
()
startup_var
=
startup_blk
.
create_var
(
name
=
unique_name
(
'create_py_reader'
)
)
startup_var
=
startup_blk
.
create_var
(
name
=
reader_name
)
startup_blk
.
append_op
(
type
=
'create_py_reader'
,
inputs
=
{
'blocking_queue'
:
queue_name
},
inputs
=
{
'blocking_queue'
:
[
queue_name
]
},
outputs
=
{
'Out'
:
[
startup_var
]},
attrs
=
{
'shape_concat'
:
shape_concat
,
...
...
@@ -527,7 +543,10 @@ def py_reader(capacity, shapes, dtypes, lod_levels=None):
main_prog_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
startup_var
)
return
monkey_patch_reader_methods
(
main_prog_var
),
feed_queue
reader
=
monkey_patch_reader_methods
(
main_prog_var
)
if
use_double_buffer
:
reader
=
double_buffer
(
reader
,
name
=
double_buffer_name
)
return
reader
,
feed_queue
def
open_files
(
filenames
,
...
...
python/paddle/fluid/tests/demo/pyreader.py
0 → 100644
浏览文件 @
d36e13ef
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.fluid
as
fluid
import
paddle.dataset.mnist
as
mnist
import
paddle
import
paddle.v2
import
threading
import
numpy
def
network
(
is_train
):
reader
,
queue
=
fluid
.
layers
.
py_reader
(
capacity
=
10
,
shapes
=
((
-
1
,
784
),
(
-
1
,
1
)),
dtypes
=
(
'float32'
,
'int64'
),
name
=
"train_reader"
if
is_train
else
"test_reader"
)
img
,
label
=
fluid
.
layers
.
read_file
(
reader
)
hidden
=
img
for
i
in
xrange
(
2
):
hidden
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
100
,
act
=
'tanh'
)
hidden
=
fluid
.
layers
.
dropout
(
hidden
,
dropout_prob
=
0.5
,
is_test
=
not
is_train
)
prediction
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
return
fluid
.
layers
.
mean
(
loss
),
queue
,
reader
def
pipe_reader_to_queue
(
reader_creator
,
queue
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
fluid
.
layers
.
data
(
name
=
'img'
,
dtype
=
'float32'
,
shape
=
[
784
]),
fluid
.
layers
.
data
(
name
=
'label'
,
dtype
=
'int64'
,
shape
=
[
1
])
],
place
=
fluid
.
CPUPlace
())
def
__thread_main__
():
for
data
in
feeder
.
decorate_reader
(
reader_creator
,
multi_devices
=
False
)():
tmp
=
fluid
.
core
.
LoDTensorArray
()
tmp
.
append
(
data
[
'img'
])
tmp
.
append
(
data
[
'label'
])
queue
.
push
(
tmp
)
queue
.
close
()
th
=
threading
.
Thread
(
target
=
__thread_main__
)
th
.
start
()
return
th
def
main
():
train_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
loss
,
train_queue
,
train_reader
=
network
(
True
)
adam
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
adam
.
minimize
(
loss
)
test_prog
=
fluid
.
Program
()
test_startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
test_prog
,
test_startup
):
with
fluid
.
unique_name
.
guard
():
test_loss
,
test_queue
,
test_reader
=
network
(
False
)
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
)).
run
(
startup_prog
)
fluid
.
Executor
(
fluid
.
CUDAPlace
(
0
)).
run
(
test_startup
)
trainer
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
loss
.
name
,
main_program
=
train_prog
)
tester
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
share_vars_from
=
trainer
,
main_program
=
test_prog
)
for
epoch_id
in
xrange
(
10
):
train_data_thread
=
pipe_reader_to_queue
(
paddle
.
batch
(
paddle
.
v2
.
reader
.
firstn
(
mnist
.
train
(),
32
),
64
),
train_queue
)
try
:
while
True
:
print
'train_loss'
,
numpy
.
array
(
trainer
.
run
(
fetch_list
=
[
loss
.
name
]))
except
fluid
.
core
.
EOFException
:
print
'End of epoch'
,
epoch_id
train_reader
.
reset
()
train_data_thread
.
join
()
test_data_thread
=
pipe_reader_to_queue
(
paddle
.
batch
(
mnist
.
test
(),
32
),
test_queue
)
try
:
while
True
:
print
'test loss'
,
numpy
.
array
(
tester
.
run
(
fetch_list
=
[
test_loss
.
name
]))
except
fluid
.
core
.
EOFException
:
print
'End of testing'
test_reader
.
reset
()
test_data_thread
.
join
()
break
del
trainer
del
tester
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录