提交 bcc67401 编写于 作者: T typhoonzero

WIP python binding of send recv

上级 d76fcb6f
......@@ -49,7 +49,7 @@ static void CreateTensorFromMessageType(framework::Variable *var,
var->GetMutable<framework::SelectedRows>();
} else {
PADDLE_THROW(
"VariableMessage type %d is not in "
"VraibleMessage type %d is not in "
"[LoDTensor, SelectedRows]",
var_type);
}
......@@ -121,17 +121,17 @@ class RecvOp : public framework::OperatorBase {
if (it != grad_list.end()) {
param_var_name = param_list[it - grad_list.begin()];
} else {
LOG(ERROR) << "grad has no paired param:" << grad_var_name;
LOG(ERROR) << "grad have no paired param:" << grad_var_name;
}
VLOG(3) << "received grad: " << grad_var_name
VLOG(3) << "recved grad: " << grad_var_name
<< " updating param: " << param_var_name;
if (fan_in > 1) {
grad_var_name = this->GetGradVarNameForTrainer(grad_var_name);
}
auto *var = recv_scope.FindVar(grad_var_name);
if (var == nullptr) {
LOG(ERROR) << "Can not find server side var: " << grad_var_name;
PADDLE_THROW("Can not find server side var");
LOG(ERROR) << "can not find server side var: " << grad_var_name;
PADDLE_THROW("can not find server side var");
}
detail::DeserializeFromMessage(v.second, dev_ctx, var);
}
......@@ -161,11 +161,11 @@ class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
public:
RecvOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("RX", "(Tensor) Input tensor to be optimized").AsDuplicable();
// AddInput("RX", "(Tensor) Input tensor to be optimized").AsDuplicable();
AddComment(R"DOC(
Recv operator
This operator will recieve tensor from send_op
This operator will recv tensor from send_op
)DOC");
AddAttr<std::string>("endpoint",
"(string, default 127.0.0.1:6164)"
......@@ -176,11 +176,11 @@ This operator will recieve tensor from send_op
kOptimizeBlock, "Serialized ProgramDesc string for recv to run.");
AddAttr<std::vector<std::string>>(
"ParamList", "type list of string",
"grad->param name mapping to find which parameters to optimize.")
"grad->param name mapping to find which param to optimize.")
.SetDefault({});
AddAttr<std::vector<std::string>>(
"GradList", "type list of string",
"grad->param name mapping to find which parameters to optimize.")
"grad->param name mapping to find which param to optimize.")
.SetDefault({});
AddAttr<int>("Fanin", "type int",
"Number of trainers in the current cluster job")
......
......@@ -74,3 +74,104 @@ def data(name,
type=type,
stop_gradient=stop_gradient,
lod_level=lod_level)
class BlockGuardServ(BlockGuard):
"""
BlockGuardServ class.
BlockGuardServ class is used to create an op with a block in a program.
"""
def __init__(self, server):
if not (isinstance(server, ListenAndServ)):
raise TypeError("BlockGuardServ takes a ListenAndServ")
super(BlockGuardServ, self).__init__(server.helper.main_program)
self.server = server
def __exit__(self, exc_type, exc_val, exc_tb):
if exc_type is not None:
return False
self.server.complete_op()
return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)
class ListenAndServ(object):
"""
ListenAndServ class.
ListenAndServ class is used to wrap listen_and_serv op to create a server
which can receive variables from clients and run a block.
"""
def __init__(self, endpoint, fan_in=1):
self.helper = LayerHelper("recv", name=name)
self.inputs = []
self.outputs = []
self.endpoint = endpoint
self.fan_in = fan_in
def do(self):
return BlockGuardServ(self)
def get_params_and_grads(self):
main_program = self.helper.main_program
current_block = main_program.current_block()
parent_block = self.parent_block()
# params and grads in the same order.
params = list()
grads = list()
for op in current_block.ops:
# FIXME(typhoonzero): op.inputs is None if it's cloned.
if "Grad" in op.inputs and "Param" in op.inputs:
params.append(op.inputs["Param"].name)
grads.append(op.inputs["Grad"].name)
return params, grads
def complete_op(self):
main_program = self.helper.main_program
current_block = main_program.current_block()
parent_block = self.parent_block()
params, grads = self.get_params_and_grads()
parent_block.append_op(
type='recv',
inputs={},
outputs={},
attrs={
'endpoint': self.endpoint,
'Fanin': self.fan_in,
'ParamList': params,
'GradList': grads,
'OptimizeBlock': current_block
})
def Send(endpoints, send_vars, get_vars):
"""
Send layer
Args:
endpoints: comma seperated IP:PORT pairs in the order
of send_vars to send
send_vars: vars to send
get_vars: vars to get from server after send completes.
Send variables to the server side, and get vars from server
side when server have finished running server side program.
"""
assert (type(send_vars) == list)
assert (type(get_vars) == list)
epmap = endpoints.split(",")
endpoints = set(epmap)
helper = LayerHelper("Send", **locals())
helper.append_op(
type="send",
inputs={"X": send_vars},
outputs={"Out": get_vars},
attrs={"endpoints": endpoints,
"epmap": epmap})
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.v2.fluid as fluid
import paddle.v2.fluid.layers as layers
import numpy
class TestRecvOp(unittest.TestCase):
def run_test(self):
# Run init_serv in a thread
pass
def init_serv(self, place):
main = fluid.Program()
with fluid.program_guard(main):
x = layers.data(shape=[32, 32], dtype='float32', name='X')
serv = fluid.ListenAndServ("127.0.0.1:6174")
with serv.do():
layers.scale(input=x, scale=10)
exe = fluid.Executor(place)
exe.run(main)
def init_client(self, place):
main = fluid.Program()
with fluid.program_guard(main):
x = layers.data(shape=[32, 32], dtype='float32', name='X')
i = fluid.initializer.Constant(x=1.0)
i(x, main.global_block())
layers.Send("127.0.0.1:6174", [x], [x])
exe = fluid.Executor(place)
exe.run(main)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册