io.py 46.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
17
import multiprocessing
P
peizhilin 已提交
18
import os
M
minqiyang 已提交
19
import six
20
import sys
Y
yuyang18 已提交
21
import threading
D
dzhwinter 已提交
22

Y
yuyang18 已提交
23
from ..data_feeder import DataFeeder
24 25
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
26
from .. import core
Y
Refine  
Yu Yang 已提交
27
from ..executor import global_scope
Y
yuyang18 已提交
28
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
29
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
30 31
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
32
import logging
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34
__all__ = [
Y
yuyang 已提交
35
    'data', 'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer',
Q
Qiao Longfei 已提交
36 37
    'random_data_generator', 'py_reader', 'create_py_reader_by_data',
    'Preprocessor', 'load'
Y
Yu Yang 已提交
38
]
Y
Yu Yang 已提交
39 40 41 42 43 44 45 46 47 48


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
49
    **Data Layer**
Y
Yu Yang 已提交
50

K
kavyasrinet 已提交
51
    This function takes in the input and based on whether data has
C
caoying03 已提交
52
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
53
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
54
    following operators in the graph.
Y
Yu Yang 已提交
55 56 57 58

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

59 60 61 62 63
    Notice that paddle would only use :code:`shape` to infer the shapes of 
    following variables in the network during compile-time. During run-time, 
    paddle would not check whether the shape of the feeded data matches the 
    :code:`shape` settings in this function. 

K
kavyasrinet 已提交
64 65
    Args:
       name(str): The name/alias of the function
S
sneaxiy 已提交
66 67 68 69
       shape(list): Tuple declaring the shape. If :code:`append_batch_size` is 
                    True and there is no -1 inside :code:`shape`, it should be 
                    considered as the shape of the each sample. Otherwise, it
                    should be considered as the shape of the batched data.  
X
Xin Pan 已提交
70 71
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
72 73 74 75 76 77
            For example if shape=[1], the resulting shape is [-1, 1]. This will 
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
78
       dtype(np.dtype|VarType|str): The type of data : float32, float16, int etc
K
kavyasrinet 已提交
79 80 81 82 83 84 85 86 87 88
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

89
          import paddle.fluid as fluid
K
kavyasrinet 已提交
90
          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
91 92 93
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
M
minqiyang 已提交
94
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
95 96 97 98 99 100 101 102 103
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
104
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
105 106 107 108 109
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
110 111
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
112
    return data_var
T
typhoonzero 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
138
    **ListenAndServ Layer**
T
typhoonzero 已提交
139

Y
yi.wu 已提交
140 141 142 143 144 145 146 147 148
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
149

Y
yi.wu 已提交
150 151 152
    Examples:
        .. code-block:: python

153
            import paddle.fluid as fluid
Y
yi.wu 已提交
154 155 156 157 158 159 160 161 162 163 164 165
            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
166 167
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
168 169
    """

Y
Yancey1989 已提交
170
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
171
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
172
        self.inputs = inputs
T
typhoonzero 已提交
173 174 175
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
176 177
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
178
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
192 193 194 195 196 197 198 199
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
200 201
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
202 203 204

        return params, grads

T
typhoonzero 已提交
205 206 207 208 209 210 211
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
212 213 214 215 216 217
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
218
            type='listen_and_serv',
Y
Yancey1989 已提交
219
            inputs={"X": self.inputs},
T
typhoonzero 已提交
220 221 222 223
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
224 225 226
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
227
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
228
                'grad_to_block_id': [""]
T
typhoonzero 已提交
229 230 231
            })


232
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
233
    """
Y
yi.wu 已提交
234 235
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
236 237

    Args:
Y
yi.wu 已提交
238
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
239
                   of send_vars to send
Y
yi.wu 已提交
240 241
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
242 243 244 245

    """
    assert (type(send_vars) == list)

246 247 248 249 250 251 252
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
253
    epmap = endpoints.split(",")
T
typhoonzero 已提交
254
    endpoints = list(set(epmap))
T
typhoonzero 已提交
255 256

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
257
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
258

T
typhoonzero 已提交
259 260 261
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
262
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
263 264 265 266 267
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
268
    if sync:
W
Wu Yi 已提交
269 270 271 272 273
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
274 275


276
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
277
    """
Y
yi.wu 已提交
278
    Receive variables from server side
279 280

    Args:
Y
yi.wu 已提交
281
        endpoints (str): comma seperated IP:PORT pairs in the order
282
                   of send_vars to send
Y
yi.wu 已提交
283 284
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
285

Y
yi.wu 已提交
286 287
    Returns:
        list: list of received variables
288 289 290
    """
    assert (type(get_vars) == list)

291 292 293 294 295 296 297
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

298 299 300 301 302 303
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
304
        inputs={"X": dummy_input},
305 306 307
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
308
    if sync:
W
Wu Yi 已提交
309 310 311 312
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
313
    return get_vars
Y
Yu Yang 已提交
314 315


Y
Refine  
Yu Yang 已提交
316 317 318 319 320 321 322 323 324 325
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
326 327
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
328 329 330
    return reader


Y
Yu Yang 已提交
331 332 333 334
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
335
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
336
    new_var.persistable = True
F
fengjiayi 已提交
337 338 339 340
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
357
    new_op = block.append_op(
F
fengjiayi 已提交
358 359 360
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
361
        attrs=op.all_attrs())
F
fengjiayi 已提交
362
    return new_op
Y
Yu Yang 已提交
363 364


W
wopeizl 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
@templatedoc(op_type='create_recordio_file_reader')
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
                       for_parallel=True):
    """
    ${comment}

    Args:
       filename(${filename_type}): ${filename_comment}.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(${lod_levels_type}): ${lod_levels_comment}.
       dtypes(list): List of strs which declaring data type.
       pass_num(int): Number of passes to run.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       ${out_comment}.

    Examples:

        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.io.open_recordio_file(
        >>>                               filename='./data.recordio',
392
        >>>                               shapes=[(3,224,224), (1,)],
W
wopeizl 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        >>>                               lod_levels=[0, 0],
        >>>                               dtypes=['float32', 'int64'])
        >>> # Via the reader, we can use 'read_file' layer to get data:
        >>> image, label = fluid.layers.io.read_file(reader)
    """
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })
Y
Yu Yang 已提交
419

W
wopeizl 已提交
420 421 422 423
    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
424

W
wopeizl 已提交
425 426
    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)
F
fengjiayi 已提交
427

W
wopeizl 已提交
428
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
429 430


F
fengjiayi 已提交
431 432 433 434 435
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
436 437 438
    Instead of opening a file and reading data from it, this
    Reader Variable generates float uniform random data by itself.
    It can be used as a dummy reader to test a network without
F
fengjiayi 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:

454
        .. code-block:: python
F
fengjiayi 已提交
455

456
            import paddle.fluid as fluid
457 458 459 460 461 462 463
            reader = fluid.layers.random_data_generator(
                                             low=0.0,
                                             high=1.0,
                                             shapes=[[3,224,224], [1]],
                                             lod_levels=[0, 0])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    return monkey_patch_reader_methods(main_prog_var)


Q
Qiao Longfei 已提交
496 497 498 499 500 501
def _py_reader(capacity,
               shapes,
               dtypes,
               lod_levels=None,
               name=None,
               use_double_buffer=True,
S
sneaxiy 已提交
502
               feed_list=None):
503

Q
Qiao Longfei 已提交
504 505 506 507 508 509 510 511 512 513
    if feed_list is not None:
        if not isinstance(feed_list, list):
            raise TypeError("feed_list should be a list of Variable"
                            " instead of " + str(type(feed_list)))
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []

Q
Qiao Longfei 已提交
514 515 516 517 518 519
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
Q
Qiao Longfei 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)

    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
S
sneaxiy 已提交
542
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity)
Q
Qiao Longfei 已提交
543 544 545 546

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
    startup_blk.append_op(
S
add doc  
sneaxiy 已提交
547
        type='create_py_reader',
Q
Qiao Longfei 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
        def __provider_thread__():
S
sneaxiy 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
            try:
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
            except Exception as ex:
                feed_queue.close()
598
                logging.warn('Your decorated reader has raised an exception!')
599
                six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level))
                    counter += 1

Q
Qiao Longfei 已提交
624
            data_names = [feed_data.name for feed_data in actual_feed_list]
Q
Qiao Longfei 已提交
625 626 627 628 629 630 631
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
632
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
649 650 651

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
652 653 654 655 656
    reader.start = __start__

    return reader


Y
yuyang18 已提交
657 658 659 660 661
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
S
sneaxiy 已提交
662
              use_double_buffer=True):
S
sneaxiy 已提交
663
    """
664
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
665

666
    This layer returns a Reader Variable.
667 668
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
669 670 671 672 673
    source. More details :ref:`user_guide_use_py_reader_en` .  When
    :code:`Executor::Run()` is invoked in C++ side, the data from the generator
    would be read automatically. Unlike :code:`DataFeeder.feed()`, the data
    reading process and :code:`Executor::Run()` process can run in parallel
    using :code:`py_reader`. The :code:`start()` method of the Reader should be
674 675 676
    called when each pass begins, while the :code:`reset()` method should be
    called when the pass ends and :code:`fluid.core.EOFException` raises.
    Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
S
sneaxiy 已提交
677 678

    Args:
679
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
Y
yuyang18 已提交
680 681 682 683 684
       shapes(list|tuple): List of tuples which declaring data shapes.
       dtypes(list|tuple): List of strs which declaring data type.
       lod_levels(list|tuple): List of ints which declaring data lod_level.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
685
       use_double_buffer(bool): Whether use double buffer or not.
S
sneaxiy 已提交
686 687

    Returns:
688
       Variable: A Reader from which we can get feeding data.
S
sneaxiy 已提交
689 690

    Examples:
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
       1. The basic usage of :code:`py_reader` is as follows:
       
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
             # user defined network, here a softmax regresssion example
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
H
Huihuang Zheng 已提交
718 719 720 721 722
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
723 724 725 726 727 728 729 730

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
731

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
       .. code-block:: python
    
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
H
Huihuang Zheng 已提交
757 758
                     paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                           buf_size=500))
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
799
    """
Q
Qiao Longfei 已提交
800 801 802 803 804 805
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
S
sneaxiy 已提交
806
        use_double_buffer=use_double_buffer)
Q
Qiao Longfei 已提交
807 808


Q
Qiao Longfei 已提交
809 810 811 812 813 814
def create_py_reader_by_data(capacity,
                             feed_list,
                             name=None,
                             use_double_buffer=True):
    """
    Create a Python reader for data feeding in Python
Q
Qiao Longfei 已提交
815

Q
Qiao Longfei 已提交
816
    This layer returns a Reader Variable.
Q
Qiao Longfei 已提交
817

Q
Qiao Longfei 已提交
818 819
    Works much like py_reader except that it's input is feed_list
    instead of shapes, dtypes and lod_levels
Q
Qiao Longfei 已提交
820

Q
Qiao Longfei 已提交
821 822 823 824 825 826
    Args:
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
       feed_list(list(Variable)): The data feed list.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
       use_double_buffer(bool): Whether use double buffer or not.
Q
Qiao Longfei 已提交
827

Q
Qiao Longfei 已提交
828 829
    Returns:
       Variable: A Reader from which we can get feeding data.
Q
Qiao Longfei 已提交
830

Q
Qiao Longfei 已提交
831
    Examples:
832
       .. code-block:: python
Q
Qiao Longfei 已提交
833

834 835 836
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist
837
         import paddle.fluid.compiler as compiler
838 839 840 841 842 843 844

         def network(img, label):
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

845 846 847
         MEMORY_OPT = False
         USE_CUDA = False

848 849 850 851 852 853 854 855 856 857 858
         image = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32')
         label = fluid.layers.data(name='label', shape=[1], dtype='int64')
         reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                        feed_list=[image, label])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=500))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)  # some network definition

859 860 861
         place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
         exe = fluid.Executor(place)
         exe.run(fluid.default_startup_program())
862

863 864 865 866 867 868 869 870 871
         build_strategy = fluid.BuildStrategy()
         build_strategy.memory_optimize = True if MEMORY_OPT else False
         compiled_prog = compiler.CompiledProgram(
             fluid.default_main_program()).with_data_parallel(
                 loss_name=loss.name,
                 build_strategy=build_strategy,
                 exec_strategy=exec_strategy)

         for epoch_id in range(2):
872 873 874
             reader.start()
             try:
                 while True:
875
                     exe.run(compiled_prog, fetch_list=[loss.name])
876 877
             except fluid.core.EOFException:
                 reader.reset()
Q
Qiao Longfei 已提交
878 879 880 881 882 883 884 885 886
    """
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list)
S
sneaxiy 已提交
887 888


889 890 891 892
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yuyang18 已提交
893
               thread_num=None,
F
fengjiayi 已提交
894 895
               buffer_size=None,
               pass_num=1,
Y
yuyang18 已提交
896
               is_test=None):
F
fengjiayi 已提交
897 898 899
    """
    Open files

900 901 902
    This layer takes a list of files to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from given files. All files must
    have name suffixs to indicate their formats, e.g., '*.recordio'.
F
fengjiayi 已提交
903 904 905 906 907 908

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
Y
yuyang18 已提交
909 910 911
       thread_num(None): The number of thread to read files.
            Default: min(len(filenames), cpu_number).
       buffer_size(None): The buffer size of reader. Default: 3 * thread_num
F
fengjiayi 已提交
912
       pass_num(int): Number of passes to run.
Y
yuyang18 已提交
913 914 915 916
       is_test(bool|None): Whether `open_files` used for testing or not. If it
            is used for testing, the order of data generated is same as the file
            order. Otherwise, it is not guaranteed the order of data is same
            between every epoch. [Default: False].
F
fengjiayi 已提交
917 918 919 920 921 922 923

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

924
         import paddle.fluid as fluid
F
fengjiayi 已提交
925
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
926
                                                     './data2.recordio'],
927
                                             shapes=[(3,224,224), (1,)],
F
fengjiayi 已提交
928
                                             lod_levels=[0, 0],
Y
yuyang18 已提交
929
                                             dtypes=['float32', 'int64'])
F
fengjiayi 已提交
930 931

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
932
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
933
    """
Y
yuyang18 已提交
934 935 936 937 938 939 940 941 942
    if thread_num is None:
        thread_num = min(len(filenames), multiprocessing.cpu_count())
    else:
        thread_num = int(thread_num)

    if buffer_size is None:
        buffer_size = 3 * thread_num
    else:
        buffer_size = int(buffer_size)
Y
yuyang18 已提交
943

M
minqiyang 已提交
944
    if isinstance(filenames, six.string_types):
F
fengjiayi 已提交
945
        filenames = [filenames]
F
fengjiayi 已提交
946 947 948 949 950 951 952 953
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
954
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
955
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
956
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
Y
yuyang18 已提交
957 958 959 960
    attrs = {
        'shape_concat': shape_concat,
        'lod_levels': lod_levels,
        'ranks': ranks,
Y
yuyang18 已提交
961 962 963
        'file_names': filenames,
        'thread_num': thread_num,
        'buffer_size': buffer_size
Y
yuyang18 已提交
964 965 966
    }
    if is_test is not None:
        attrs['is_test'] = is_test
F
fengjiayi 已提交
967
    startup_blk.append_op(
Y
yuyang18 已提交
968
        type='open_files', outputs={'Out': [startup_reader]}, attrs=attrs)
F
fengjiayi 已提交
969

F
fengjiayi 已提交
970 971 972 973 974 975 976
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
977

F
fengjiayi 已提交
978 979 980
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
981
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
982 983 984
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
985
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
986 987 988 989 990
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
991 992 993 994
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
995 996


997 998
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
1009
def shuffle(reader, buffer_size):
1010
    """
T
Tink_Y 已提交
1011 1012 1013 1014 1015 1016
    Creates a data reader whose data output is shuffled.
    Output from the iterator that created by original reader will be
    buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
    is determined by argument buf_size.

    Args:
H
haowang101779990 已提交
1017 1018 1019 1020 1021
        reader(callable): the original reader whose output will be shuffled.
        buf_size(int): shuffle buffer size.

    Returns:
        callable: the new reader whose output is shuffled.
1022 1023 1024 1025

    Examples:
        .. code-block:: python

1026
            import paddle.fluid as fluid
1027 1028 1029 1030 1031 1032 1033 1034 1035
            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
                                                    shapes=[(3,224,224), (1,)],
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)
            shuffle_reader = fluid.layers.shuffle(reader=batch_reader, buffer_size=5000)
1036
    """
1037 1038
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
1039 1040


J
JiayiFeng 已提交
1041
def batch(reader, batch_size):
F
fengjiayi 已提交
1042
    """
1043 1044 1045
    This layer is a reader decorator. It takes a reader and adds
    'batching' decoration on it. When reading with the result
    decorated reader, output data will be automatically organized
F
fengjiayi 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    to the form of batches.

    Args:
        reader(Variable): The reader to be decorated with 'batching'.
        batch_size(int): The batch size.

    Returns:
        Variable: The reader which has been decorated with 'batching'.

    Examples:
        .. code-block:: python

1058
            import paddle.fluid as fluid
F
fengjiayi 已提交
1059 1060
            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
1061
                                                    shapes=[(3,224,224), (1,)],
F
fengjiayi 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)

            # If we read data with the raw_reader:
            #     data = fluid.layers.read_file(raw_reader)
            # We can only get data instance by instance.
1071
            #
F
fengjiayi 已提交
1072 1073
            # However, if we read data with the batch_reader:
            #     data = fluid.layers.read_file(batch_reader)
1074 1075
            # Each 5 adjacent instances will be automatically combined together
            # to become a batch. So what we get('data') is a batch data instead
F
fengjiayi 已提交
1076 1077
            # of an instance.
    """
J
JiayiFeng 已提交
1078 1079 1080 1081
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


1082
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:

F
flame 已提交
1100 1101
        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.open_files(filenames=['mnist.recordio'],
Y
yuyang18 已提交
1102
        >>>                                  shapes=[[-1, 784], [-1, 1]],
F
flame 已提交
1103
        >>>                                  lod_levels=[0, 0],
Y
yuyang18 已提交
1104 1105 1106 1107
        >>>                                  dtypes=['float32', 'int64'])
        >>> reader = fluid.layers.double_buffer(reader)
        >>> img, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
1108 1109 1110
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
1111 1112
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
1113 1114


F
fengjiayi 已提交
1115
def multi_pass(reader, pass_num):
1116 1117
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
1118 1119


F
fengjiayi 已提交
1120
def read_file(reader):
F
fengjiayi 已提交
1121
    """
F
fengjiayi 已提交
1122
    Execute the given reader and get data via it.
F
fengjiayi 已提交
1123

1124 1125
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
F
fengjiayi 已提交
1126 1127 1128 1129
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
1130
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
1131 1132

    Returns:
F
fengjiayi 已提交
1133
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
1134 1135 1136

    Examples:
        .. code-block:: python
1137 1138
          
           import paddle.fluid as fluid
F
fengjiayi 已提交
1139 1140 1141 1142 1143
           data_file = fluid.layers.open_files(
                filenames=['mnist.recordio'],
                shapes=[(-1, 748), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"])
1144
           data_file = fluid.layers.double_buffer(
F
fengjiayi 已提交
1145
                fluid.layers.batch(data_file, batch_size=64))
1146
           input, label = fluid.layers.read_file(data_file)
F
fengjiayi 已提交
1147
    """
Y
Yu Yang 已提交
1148 1149
    helper = LayerHelper('read_file')
    out = [
X
Xin Pan 已提交
1150
        helper.create_variable_for_type_inference(
Y
Yu Yang 已提交
1151
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
1152
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
1153 1154
    ]
    helper.append_op(
F
fengjiayi 已提交
1155
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
1156 1157 1158 1159
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
1160 1161 1162


class Preprocessor(object):
X
Xin Pan 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171
    """
    A block for data pre-processing in reader.

    Args:
        reader (Variable): A reader variable.
        name (str, default None): The name of the reader.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1172

H
Huihuang Zheng 已提交
1173 1174
           import paddle.fluid as fluid

1175 1176 1177 1178 1179 1180
           reader = fluid.layers.io.open_files(
               filenames=['./data1.recordio', './data2.recordio'],
               shapes=[(3, 224, 224), (1, )],
               lod_levels=[0, 0],
               dtypes=['float32', 'int64']) 

X
Xin Pan 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
            preprocessor = fluid.layers.io.Preprocessor(reader=reader)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

            data_file = fluid.layers.io.double_buffer(preprocessor())

    """
F
fengjiayi 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

X
Xin Pan 已提交
1207
    def _is_completed(self):
F
fengjiayi 已提交
1208 1209
        return self.sub_block and self.source_var_names and self.sink_var_names

S
rename  
sneaxiy 已提交
1210
    @signature_safe_contextmanager
F
fengjiayi 已提交
1211 1212
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
W
Wu Yi 已提交
1213
        self.sub_block = self.main_prog._create_block()
F
fengjiayi 已提交
1214
        yield
W
Wu Yi 已提交
1215
        self.main_prog._rollback()
F
fengjiayi 已提交
1216
        self.status = Preprocessor.AFTER_SUB_BLOCK
X
Xin Pan 已提交
1217
        if not self._is_completed():
F
fengjiayi 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
1233 1234
        self.source_var_names = [
            unique_name("preprocessor_source")
M
minqiyang 已提交
1235
            for _ in six.moves.range(len(source_shapes))
F
fengjiayi 已提交
1236
        ]
F
fengjiayi 已提交
1237
        source_vars = []
F
fengjiayi 已提交
1238 1239 1240
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
1241
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
1242
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
1292
    helper.append_op(type="load", inputs={}, output={"Out": out}, attrs=attrs)