io.py 36.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import multiprocessing
P
peizhilin 已提交
16
import os
M
minqiyang 已提交
17
import six
18
import sys
Y
yuyang18 已提交
19
import threading
D
dzhwinter 已提交
20

Y
yuyang18 已提交
21
from ..data_feeder import DataFeeder
22 23
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
24
from .. import core
Y
Refine  
Yu Yang 已提交
25
from ..executor import global_scope
Y
yuyang18 已提交
26
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
27
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
28 29
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
30

31
import logging
32
from ..data_feeder import check_dtype, check_type
33
from paddle.fluid.framework import static_only
34
from ..framework import _get_paddle_place, _current_expected_place, _set_expected_place
Y
Yu Yang 已提交
35

Y
Yu Yang 已提交
36
__all__ = [
37 38
    'data', 'read_file', 'double_buffer', 'py_reader',
    'create_py_reader_by_data', 'load'
Y
Yu Yang 已提交
39
]
Y
Yu Yang 已提交
40 41


42
@static_only
Y
Yu Yang 已提交
43 44 45 46 47 48 49 50
def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
51
    **Data Layer**
Y
Yu Yang 已提交
52

G
guofei 已提交
53 54
    This operator creates the global variable. The global variables can be
    accessed by all the following operators in the graph.
Y
Yu Yang 已提交
55

56 57
    Note:
        :code:`paddle.fluid.layers.data` is deprecated as it will be removed in
G
guofei 已提交
58
        a later version. Please use :code:`paddle.fluid.data` .
Y
Yu Yang 已提交
59

60
        This :code:`paddle.fluid.layers.data` set shape and dtype at compile
T
tianshuo78520a 已提交
61
        time but does NOT check the shape or the dtype of fed data, the
62
        :code:`paddle.fluid.data` checks the shape and the dtype of data fed
G
guofei 已提交
63
        by Executor or ParallelExecutor during run time.
64

65 66 67 68 69 70 71 72 73 74
        To feed variable size inputs, users can feed variable size inputs
        directly to this :code:`paddle.fluid.layers.data` and PaddlePaddle will
        fit the size accordingly. Or set -1 on the variable dimension when using
        :code:`paddle.fluid.data` .

        The default :code:`stop_gradient` attribute of the Variable created by
        this API is true, which means the gradient won't be passed backward
        through the data Varaible. Set :code:`var.stop_gradient = False` If
        user would like to pass backward gradient.

K
kavyasrinet 已提交
75
    Args:
G
guofei 已提交
76 77
       name(str): The name/alias of the variable, see :ref:`api_guide_Name`
            for more details.
78
       shape(list|tuple): Tuple declaring the shape. If :code:`append_batch_size` is
79
            True and there is no -1 inside :code:`shape`, it should be
G
guofei 已提交
80
            considered as the shape of the each sample. Otherwise, it should
81
            be considered as the shape of the batched data.
X
Xin Pan 已提交
82 83
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
84
            For example if shape=[1], the resulting shape is [-1, 1]. This will
85 86 87 88 89
            be useful to set different batch size at run time.
          2. If shape contains -1, such as shape=[1, -1].
            append_batch_size will be enforced to be be False (ineffective)
            because PaddlePaddle cannot set more than 1 unknown number on the
            shape.
G
guofei 已提交
90 91 92
       dtype(np.dtype|VarType|str): The type of the data. Supported dtype: bool,
            float16, float32, float64, int8, int16, int32, int64, uint8.
       type(VarType): The output type. Supported dtype: VarType.LOD_TENSOR,
93
            VarType.SELECTED_ROWS, VarType.NCCL_ID. Default: VarType.LOD_TENSOR.
K
kavyasrinet 已提交
94
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
G
guofei 已提交
95
            Default: 0.
K
kavyasrinet 已提交
96
       stop_gradient(bool): A boolean that mentions whether gradient should flow.
97
            Default: True.
K
kavyasrinet 已提交
98 99

    Returns:
G
guofei 已提交
100 101 102 103
        The global variable that gives access to the data.

    Return Type:
        Variable
K
kavyasrinet 已提交
104 105 106 107

    Examples:
        .. code-block:: python

108
          import paddle.fluid as fluid
K
kavyasrinet 已提交
109
          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
110 111
    """
    helper = LayerHelper('data', **locals())
112 113 114 115

    check_type(name, 'name', (six.binary_type, six.text_type), 'data')
    check_type(shape, 'shape', (list, tuple), 'data')

Y
Yu Yang 已提交
116
    shape = list(shape)
M
minqiyang 已提交
117
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
118 119 120 121 122 123 124 125 126
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

127 128 129 130 131 132 133
    data_var = helper.create_global_variable(name=name,
                                             shape=shape,
                                             dtype=dtype,
                                             type=type,
                                             stop_gradient=stop_gradient,
                                             lod_level=lod_level,
                                             is_data=True)
Y
Yu Yang 已提交
134
    return data_var
T
typhoonzero 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
160
    **ListenAndServ Layer**
T
typhoonzero 已提交
161

Y
yi.wu 已提交
162 163 164 165 166 167 168 169 170
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
171

Y
yi.wu 已提交
172 173 174
    Examples:
        .. code-block:: python

175
            import paddle.fluid as fluid
Y
yi.wu 已提交
176 177 178 179 180 181 182 183 184 185 186 187
            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
188 189
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
190 191
    """

Y
Yancey1989 已提交
192
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
193
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
194
        self.inputs = inputs
T
typhoonzero 已提交
195 196 197
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
198 199
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
200
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
214 215 216 217 218 219 220 221
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
222 223
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
224 225 226

        return params, grads

T
typhoonzero 已提交
227 228 229 230 231 232 233
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
234
    def complete_op(self):
235 236
        from ..incubate.fleet.parameter_server.mode import DistributedMode

T
typhoonzero 已提交
237 238 239 240 241
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
242
            type='listen_and_serv',
Y
Yancey1989 已提交
243
            inputs={"X": self.inputs},
T
typhoonzero 已提交
244 245 246 247
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
248 249 250
                'optimize_blocks':
                [current_block
                 ],  # did not support multiple optimize blocks in layers
1
123malin 已提交
251 252
                'distributed_mode':
                DistributedMode.SYNC,  # did not support async now in layers
Q
qiaolongfei 已提交
253
                'grad_to_block_id': [""]
T
typhoonzero 已提交
254 255 256
            })


257
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
258
    """
Y
yi.wu 已提交
259 260
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
261 262

    Args:
T
tianshuo78520a 已提交
263
        endpoints (str): comma separated IP:PORT pairs in the order
T
typhoonzero 已提交
264
                   of send_vars to send
Y
yi.wu 已提交
265 266
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
267 268 269 270

    """
    assert (type(send_vars) == list)

271 272 273 274 275 276 277
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
278
    epmap = endpoints.split(",")
T
typhoonzero 已提交
279
    endpoints = list(set(epmap))
T
typhoonzero 已提交
280 281

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
282
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
283

284 285 286 287 288 289 290 291 292 293 294
    helper.append_op(type="send",
                     inputs={"X": send_vars},
                     outputs={"Out": dummy_output},
                     attrs={
                         "endpoints":
                         endpoints,
                         "epmap":
                         epmap,
                         rpc_op_role_name:
                         core.op_proto_and_checker_maker.OpRole.RPC
                     })
Y
yi.wu 已提交
295
    if sync:
296 297 298 299
        helper.append_op(type="send_barrier",
                         inputs={"X": dummy_output},
                         outputs={"Out": []},
                         attrs={"endpoints": endpoints})
300 301


302
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
303
    """
Y
yi.wu 已提交
304
    Receive variables from server side
305 306

    Args:
T
tianshuo78520a 已提交
307
        endpoints (str): comma separated IP:PORT pairs in the order
308
                   of send_vars to send
Y
yi.wu 已提交
309 310
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
311

Y
yi.wu 已提交
312 313
    Returns:
        list: list of received variables
314 315 316
    """
    assert (type(get_vars) == list)

317 318 319 320 321 322 323
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

324 325 326 327
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
328 329 330 331 332 333 334
    helper.append_op(type="recv",
                     inputs={"X": dummy_input},
                     outputs={"Out": get_vars},
                     attrs={
                         "endpoints": endpoints,
                         "epmap": epmap
                     })
Y
yi.wu 已提交
335
    if sync:
336 337 338
        helper.append_op(type="fetch_barrier",
                         outputs={"Out": get_vars},
                         attrs={"endpoints": endpoints})
Y
yi.wu 已提交
339
    return get_vars
Y
Yu Yang 已提交
340 341


Y
Refine  
Yu Yang 已提交
342
def monkey_patch_reader_methods(reader):
343

Y
Refine  
Yu Yang 已提交
344 345 346 347 348 349 350 351 352
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
353 354
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
355 356 357
    return reader


Y
Yu Yang 已提交
358 359 360 361
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
362
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
363
    new_var.persistable = True
F
fengjiayi 已提交
364 365 366 367
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

384 385 386 387
    new_op = block.append_op(type=op.type,
                             inputs=new_input_map,
                             outputs=new_output_map,
                             attrs=op.all_attrs())
F
fengjiayi 已提交
388
    return new_op
Y
Yu Yang 已提交
389 390


Q
Qiao Longfei 已提交
391 392 393 394 395 396
def _py_reader(capacity,
               shapes,
               dtypes,
               lod_levels=None,
               name=None,
               use_double_buffer=True,
S
sneaxiy 已提交
397
               feed_list=None):
Q
Qiao Longfei 已提交
398 399 400 401 402 403 404 405 406
    if feed_list is not None:
        if not isinstance(feed_list, list):
            raise TypeError("feed_list should be a list of Variable"
                            " instead of " + str(type(feed_list)))
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
407
        need_check_feed = []
Q
Qiao Longfei 已提交
408

Q
Qiao Longfei 已提交
409 410 411 412 413 414
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
415
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
Q
Qiao Longfei 已提交
416 417
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
418
        need_check_feed = [0 for dt in dtypes]
Q
Qiao Longfei 已提交
419 420 421 422 423 424 425 426 427
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)
428
    dtype_int = [int(t) for t in dtypes]
Q
Qiao Longfei 已提交
429 430 431 432 433 434 435 436 437 438
    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
439
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, False)
Q
Qiao Longfei 已提交
440 441 442

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
443 444 445 446 447 448 449 450 451 452
    startup_blk.append_op(type='create_py_reader',
                          inputs={'blocking_queue': [queue_name]},
                          outputs={'Out': [startup_var]},
                          attrs={
                              'shape_concat': shape_concat,
                              'lod_levels': lod_levels,
                              'dtypes': dtype_int,
                              'need_check_feed': need_check_feed,
                              'ranks': ranks
                          })
Q
Qiao Longfei 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
476

477
        def __provider_thread__(legacy_expected_place):
S
sneaxiy 已提交
478
            try:
479 480 481
                # See _DataLoaderIterSingleProcess._thread_loop() for why set expected place here.
                _set_expected_place(legacy_expected_place)

S
sneaxiy 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
                for tensors in func():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if reader.exited:
                        break
                    feed_queue.push(array)
                    if reader.exited:
                        break
                feed_queue.close()
            except Exception as ex:
Z
Zeng Jinle 已提交
499
                feed_queue.kill()
500
                logging.warn('Your decorated reader has raised an exception!')
501
                six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
502

503 504
        reader.thread = threading.Thread(target=__provider_thread__,
                                         args=(_current_expected_place(), ))
Q
Qiao Longfei 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
520 521 522 523
                        data(name=name,
                             dtype=dtype,
                             shape=shape,
                             lod_level=lod_level))
Q
Qiao Longfei 已提交
524 525
                    counter += 1

Q
Qiao Longfei 已提交
526
            data_names = [feed_data.name for feed_data in actual_feed_list]
527 528 529 530
            feeder = DataFeeder(feed_list=actual_feed_list,
                                place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(paddle_reader,
                                                   multi_devices=False)
Q
Qiao Longfei 已提交
531 532 533

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
534
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
S
sneaxiy 已提交
551 552 553

    reader.decorate_batch_generator = __set_tensor_provider__
    reader.decorate_sample_list_generator = __set_paddle_reader__
Q
Qiao Longfei 已提交
554 555 556 557 558
    reader.start = __start__

    return reader


Y
yuyang18 已提交
559 560 561 562 563
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
S
sneaxiy 已提交
564
              use_double_buffer=True):
S
sneaxiy 已提交
565
    """
566
	:api_attr: Static Graph
S
swtkiwi 已提交
567

568
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
569

G
guofei 已提交
570
    This operator returns a Reader Variable.
571 572
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
573 574
    source and feed the data from the data source to the Reader Variable.
    When :code:`Executor::Run()` is invoked in C++ side, the data from the
G
guofei 已提交
575
    generator would be read automatically. Unlike :code:`DataFeeder.feed()`,
576
    the data reading process and :code:`Executor::Run()` process can run in
G
guofei 已提交
577
    parallel using :code:`py_reader`. The :code:`start()` method of the Reader
578
    should be called when each pass begins, while the :code:`reset()` method
G
guofei 已提交
579 580 581
    should be called when the pass ends and :code:`fluid.core.EOFException` raises.

    Note:
582
       :code:`Program.clone()` method cannot clone :code:`py_reader`. You can
G
guofei 已提交
583
       refer to :ref:`api_fluid_Program` for more details.
584

G
guofei 已提交
585 586
       The :code:`read_file` call needs to be in the program block of :code:`py_reader`.
       You can refer to :ref:`api_fluid_layers_read_file` for more details.
S
sneaxiy 已提交
587 588

    Args:
589
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
590
       shapes(list|tuple): List of tuples which declaring data shapes. shapes[i]
G
guofei 已提交
591 592 593
            represents the i-th data shape.
       dtypes(list|tuple): List of strings which declaring data type. Supported dtype:
            bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
594
       lod_levels(list|tuple): List of ints which declaring data lod_level.
G
guofei 已提交
595 596 597
       name(basestring): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
598 599
       use_double_buffer(bool): Whether use double buffer or not. The double buffer is
            for pre-reading the data of the next batch and copy the data asynchronously
G
guofei 已提交
600
            from CPU to GPU. Default is True.
S
sneaxiy 已提交
601 602

    Returns:
G
guofei 已提交
603 604 605 606
       A Reader from which we can get feeding data.

    Return Type:
       Variable
S
sneaxiy 已提交
607 608

    Examples:
609
       1. The basic usage of :code:`py_reader` is as follows:
610

611
       .. code-block:: python
612

613 614 615 616 617
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(image, label):
T
tianshuo78520a 已提交
618
             # user defined network, here a softmax regession example
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
             predict = fluid.layers.fc(input=image, size=10, act='softmax')
             return fluid.layers.cross_entropy(input=predict, label=label)

         reader = fluid.layers.py_reader(capacity=64,
                                         shapes=[(-1, 1, 28, 28), (-1, 1)],
                                         dtypes=['float32', 'int64'])
         reader.decorate_paddle_reader(
             paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                   buf_size=1000))

         img, label = fluid.layers.read_file(reader)
         loss = network(img, label)

         fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
         exe = fluid.ParallelExecutor(use_cuda=True)
         for epoch_id in range(10):
             reader.start()
H
Huihuang Zheng 已提交
636 637 638 639 640
             try:
                 while True:
                     exe.run(fetch_list=[loss.name])
             except fluid.core.EOFException:
                 reader.reset()
641 642 643 644 645 646 647 648

         fluid.io.save_inference_model(dirname='./model',
                                       feeded_var_names=[img.name, label.name],
                                       target_vars=[loss],
                                       executor=fluid.Executor(fluid.CUDAPlace(0)))

       2. When training and testing are both performed, two different
       :code:`py_reader` should be created with different names, e.g.:
S
sneaxiy 已提交
649

650
       .. code-block:: python
651

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
         import paddle
         import paddle.fluid as fluid
         import paddle.dataset.mnist as mnist

         def network(reader):
             img, label = fluid.layers.read_file(reader)
             # User defined network. Here a simple regression as example
             predict = fluid.layers.fc(input=img, size=10, act='softmax')
             loss = fluid.layers.cross_entropy(input=predict, label=label)
             return fluid.layers.mean(loss)

         # Create train_main_prog and train_startup_prog
         train_main_prog = fluid.Program()
         train_startup_prog = fluid.Program()
         with fluid.program_guard(train_main_prog, train_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with test program
             with fluid.unique_name.guard():
                 train_reader = fluid.layers.py_reader(capacity=64,
                                                       shapes=[(-1, 1, 28, 28),
                                                               (-1, 1)],
                                                       dtypes=['float32', 'int64'],
                                                       name='train_reader')
                 train_reader.decorate_paddle_reader(
H
Huihuang Zheng 已提交
675 676
                     paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5),
                                           buf_size=500))
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
                 train_loss = network(train_reader)  # some network definition
                 adam = fluid.optimizer.Adam(learning_rate=0.01)
                 adam.minimize(train_loss)

         # Create test_main_prog and test_startup_prog
         test_main_prog = fluid.Program()
         test_startup_prog = fluid.Program()
         with fluid.program_guard(test_main_prog, test_startup_prog):
             # Use fluid.unique_name.guard() to share parameters with train program
             with fluid.unique_name.guard():
                 test_reader = fluid.layers.py_reader(capacity=32,
                                                      shapes=[(-1, 1, 28, 28), (-1, 1)],
                                                      dtypes=['float32', 'int64'],
                                                      name='test_reader')
                 test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
                 test_loss = network(test_reader)

         fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
         fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)

         train_exe = fluid.ParallelExecutor(use_cuda=True,
                                            loss_name=train_loss.name,
                                            main_program=train_main_prog)
         test_exe = fluid.ParallelExecutor(use_cuda=True,
                                           loss_name=test_loss.name,
                                           main_program=test_main_prog)
         for epoch_id in range(10):
             train_reader.start()
             try:
                 while True:
                    train_exe.run(fetch_list=[train_loss.name])
             except fluid.core.EOFException:
                 train_reader.reset()

         test_reader.start()
         try:
             while True:
                 test_exe.run(fetch_list=[test_loss.name])
         except fluid.core.EOFException:
             test_reader.reset()
S
sneaxiy 已提交
717
    """
718 719
    logging.warn(
        'paddle.fluid.layers.py_reader() may be deprecated in the near future. '
720
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
721 722 723 724 725 726
    return _py_reader(capacity=capacity,
                      shapes=shapes,
                      dtypes=dtypes,
                      lod_levels=lod_levels,
                      name=name,
                      use_double_buffer=use_double_buffer)
Q
Qiao Longfei 已提交
727 728


Q
Qiao Longfei 已提交
729 730 731 732 733
def create_py_reader_by_data(capacity,
                             feed_list,
                             name=None,
                             use_double_buffer=True):
    """
734
	:api_attr: Static Graph
S
swtkiwi 已提交
735

736 737 738 739 740 741 742 743 744 745 746 747 748
    The OP creates a Python reader for data feeding in Python, it is similar
    to :ref:`api_fluid_layers_py_reader` except that it can read data from
    the list of feed variables.

    Parameters:
        capacity (int): The buffer capacity maintained by :code:`py_reader`. Its unit
            is batch number. Set larger :attr:`capacity` if the reader is fast.
        feed_list (list(Variable)): The feed variables, are usually created by
            :code:`fluid.data()`.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`. Default: None.
        use_double_buffer (bool, optional): Whether use double buffer. If it's True,
            the OP would prefetch next batch data asynchronously. Default: True.
Q
Qiao Longfei 已提交
749

Q
Qiao Longfei 已提交
750
    Returns:
751
        Reader: A Reader for data feeding. The data types of read data are the same as the data types of variables of :attr:`feed_list`.
Q
Qiao Longfei 已提交
752

Q
Qiao Longfei 已提交
753
    Examples:
754
        .. code-block:: python
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
          import paddle
          import paddle.fluid as fluid
          import paddle.dataset.mnist as mnist

          def network(img, label):
              # User defined network. Here a simple regression as example
              predict = fluid.layers.fc(input=img, size=10, act='softmax')
              loss = fluid.layers.cross_entropy(input=predict, label=label)
              return fluid.layers.mean(loss)

          MEMORY_OPT = False
          USE_CUDA = False

          image = fluid.data(name='image', shape=[None, 1, 28, 28], dtype='float32')
          label = fluid.data(name='label', shape=[None, 1], dtype='int64')
          reader = fluid.layers.create_py_reader_by_data(capacity=64,
                                                         feed_list=[image, label])
          reader.decorate_paddle_reader(
              paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5), buf_size=500))
          img, label = fluid.layers.read_file(reader)
T
tianshuo78520a 已提交
776
          loss = network(img, label) # The definition of custom network and the loss function
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

          place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())

          build_strategy = fluid.BuildStrategy()
          build_strategy.memory_optimize = True if MEMORY_OPT else False
          exec_strategy = fluid.ExecutionStrategy()
          compiled_prog = fluid.compiler.CompiledProgram(
          fluid.default_main_program()).with_data_parallel(
              loss_name=loss.name,
              build_strategy=build_strategy,
              exec_strategy=exec_strategy)

          for epoch_id in range(2):
          reader.start()
          try:
              while True:
                  exe.run(compiled_prog, fetch_list=[loss.name])
          except fluid.core.EOFException:
              reader.reset()
Q
Qiao Longfei 已提交
798
    """
799 800 801
    logging.warn(
        'paddle.fluid.layers.create_py_reader_by_data() may be deprecated in the near future. '
        'Please use paddle.fluid.io.DataLoader.from_generator() instead.')
802 803 804 805 806 807 808
    return _py_reader(capacity=capacity,
                      shapes=None,
                      dtypes=None,
                      lod_levels=None,
                      name=name,
                      use_double_buffer=use_double_buffer,
                      feed_list=feed_list)
S
sneaxiy 已提交
809 810


J
JiayiFeng 已提交
811
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
812 813 814
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
815 816 817 818
    startop_op = startup_blk.append_op(type=op_type,
                                       inputs={'UnderlyingReader': reader},
                                       outputs={'Out': [startup_var]},
                                       attrs=attrs)
Y
Yu Yang 已提交
819
    startup_var.persistable = True
F
fengjiayi 已提交
820 821 822 823
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
824 825


826 827
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
828 829
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
830 831 832 833
    main_blk.append_op(type=op_type,
                       inputs={'UnderlyingReader': reader},
                       outputs={'Out': [new_reader]},
                       attrs=attrs)
834 835 836
    return monkey_patch_reader_methods(new_reader)


837
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
838
    """
L
liu zhengxi 已提交
839
    Wrap a double buffer reader. The class Reader contains DecoratedReader and FileReader. Moreover, the DecoratedReader is inherited by CustomReader and BufferedReader. This function is related to BufferedReader. The data will copy to target place with a double buffer queue. If the target place is None, the place that executor perform on will be used.
Y
yuyang18 已提交
840 841


L
liu zhengxi 已提交
842 843
    Args:
        reader (Variable): The Reader Variable need to be wrapped.
844
        place (Place|str, optional): The place of target data, such as CPU, GPU, and if use GPU, it's necessary to point out which card is involved. Default is the sample place of executor perform.
845 846
            if ``place`` is string, It can be ``cpu``, ``gpu:x``, where ``x`` is the ndex of the GPUs.
        name (str, optional): Variable name. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
Y
yuyang18 已提交
847 848

    Returns:
L
liu zhengxi 已提交
849
        Variable(Reader): wrapped reader with double buffer.
Y
yuyang18 已提交
850 851

    Examples:
L
liu zhengxi 已提交
852
        ..  code-block:: python
853

L
liu zhengxi 已提交
854 855 856 857 858 859 860
            import paddle.fluid as fluid
            reader = fluid.layers.py_reader(capacity=64,
                                            shapes=[(-1, 1, 28, 28), (-1, 1)],
                                            dtypes=['float32', 'int64'],
                                            use_double_buffer=False)
            reader = fluid.layers.double_buffer(reader)
            image, label = fluid.layers.read_file(reader)
Y
yuyang18 已提交
861
    """
Y
Yu Yang 已提交
862 863
    attrs = dict()
    if place is not None:
864 865
        attrs['place'] = str(_get_paddle_place(place)).upper()

866 867 868 869
    return __create_unshared_decorated_reader__('create_double_buffer_reader',
                                                reader,
                                                attrs,
                                                name=name)
Y
Yu Yang 已提交
870 871


F
fengjiayi 已提交
872
def read_file(reader):
F
fengjiayi 已提交
873
    """
874
	:api_attr: Static Graph
S
swtkiwi 已提交
875

F
fengjiayi 已提交
876
    Execute the given reader and get data via it.
F
fengjiayi 已提交
877

878 879
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
880
    `fluid.layers.double_buffer()` .
F
fengjiayi 已提交
881 882 883

    Args:

F
fengjiayi 已提交
884
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
885 886

    Returns:
887
        Tuple[Variable]: Data read from the given reader.
F
fengjiayi 已提交
888 889 890

    Examples:
        .. code-block:: python
891

892
           import paddle.fluid as fluid
893 894 895 896
           reader = fluid.layers.py_reader(capacity=64,
                                           shapes=[(-1, 1, 28, 28), (-1, 1)],
                                           dtypes=['float32', 'int64'])
           image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
897
    """
Y
Yu Yang 已提交
898 899
    helper = LayerHelper('read_file')
    out = [
900 901
        helper.create_variable_for_type_inference(stop_gradient=True,
                                                  dtype='float32')
F
fengjiayi 已提交
902
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
903
    ]
904 905 906
    helper.append_op(type='read',
                     inputs={'Reader': [reader]},
                     outputs={'Out': out})
Y
Yu Yang 已提交
907 908 909 910
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
911 912


Y
yuyang18 已提交
913 914
def load(out, file_path, load_as_fp16=None):
    """
915
    Load operator will load a LoDTensor / SelectedRows variable from disk file.
Y
yuyang18 已提交
916 917

    Args:
918
        out(Variable): The LoDTensor / SelectedRows need to be loaded..
Y
yuyang18 已提交
919

920
        file_path(STRING): Variable will be loaded from "file_path".
Y
yuyang18 已提交
921

922
        load_as_fp16(BOOLEAN): If true, the tensor will be first loaded and then converted to float16 data type. Otherwise, the tensor will be directly loaded without data type conversion. Default is false..
Y
yuyang18 已提交
923 924
    Returns:
        None
925 926 927 928 929 930 931

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            tmp_tensor = fluid.layers.create_tensor(dtype='float32')
            fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")
Y
yuyang18 已提交
932 933 934 935 936
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
937
    helper.append_op(type="load", inputs={}, outputs={"Out": out}, attrs=attrs)