test_dist_transpiler.py 49.1 KB
Newer Older
Y
Yancey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15 16
import math

17
import functools
18
import unittest
19 20
import numpy as np

21
import gc
T
tangwei12 已提交
22

23 24
gc.set_debug(gc.DEBUG_COLLECTABLE)

25
import paddle
26
import paddle.fluid as fluid
27

Y
Yancey 已提交
28

W
Wu Yi 已提交
29
class TranspilerTest(unittest.TestCase):
Y
Yancey 已提交
30
    def setUp(self):
W
Wu Yi 已提交
31 32 33 34 35 36 37 38 39 40 41 42
        self.trainer_id = 0
        self.trainers = 2
        self.pservers = 2
        # NOTE: we do not actually bind this port
        self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
        self.pserver1_ep = "127.0.0.1:6174"
        self.pserver2_ep = "127.0.0.1:6175"
        self.sync_mode = True
        self.transpiler = None

    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
43 44 45 46 47 48 49
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
W
Wu Yi 已提交
50 51
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
52
        avg_cost = paddle.mean(cost)
W
Wu Yi 已提交
53 54 55 56 57
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)

    def get_main_program(self):
        main = fluid.Program()
58
        main.random_seed = 1
W
Wu Yi 已提交
59 60 61 62 63
        with fluid.program_guard(main):
            self.net_conf()
        self.origin_prog = main.clone()
        return main

1
123malin 已提交
64
    def get_trainer(self, config=None, sync_mode=True):
G
gongweibao 已提交
65 66
        src = fluid.default_startup_program().clone()

1
123malin 已提交
67
        t = self._transpiler_instance(config, sync_mode=True)
G
gongweibao 已提交
68

W
Wu Yi 已提交
69
        trainer_main = t.get_trainer_program(wait_port=False)
G
gongweibao 已提交
70 71
        trainer_startup = fluid.default_startup_program()

72 73
        assert src.num_blocks == 1
        assert trainer_startup.num_blocks == src.num_blocks
G
gongweibao 已提交
74 75

        return trainer_main, trainer_startup
W
Wu Yi 已提交
76

Q
qiaolongfei 已提交
77 78
    def get_pserver(self, ep, config=None, sync_mode=True):
        t = self._transpiler_instance(config, sync_mode)
W
Wu Yi 已提交
79 80 81 82
        pserver = t.get_pserver_program(ep)
        startup = t.get_startup_program(ep, pserver)
        return pserver, startup

Q
qiaolongfei 已提交
83
    def _transpiler_instance(self, config=None, sync_mode=True):
W
Wu Yi 已提交
84 85
        if not self.transpiler:
            main = self.get_main_program()
G
gongweibao 已提交
86
            self.transpiler = fluid.DistributeTranspiler(config=config)
87 88 89 90 91 92 93
            self.transpiler.transpile(
                self.trainer_id,
                program=main,
                pservers=self.pserver_eps,
                trainers=self.trainers,
                sync_mode=sync_mode,
            )
G
gongweibao 已提交
94

W
Wu Yi 已提交
95
        return self.transpiler
Y
Yancey 已提交
96

Q
qiaolongfei 已提交
97 98
    def transpiler_test_impl(self):
        pass
W
Wu Yi 已提交
99

Y
Yancey 已提交
100
    def test_transpiler(self):
Q
qiaolongfei 已提交
101 102
        main = fluid.Program()
        startup = fluid.Program()
T
tangwei12 已提交
103 104 105
        with fluid.unique_name.guard():
            with fluid.program_guard(main, startup):
                self.transpiler_test_impl()
106 107 108 109 110 111
        # NOTE: run gc.collect to eliminate pybind side objects to
        # prevent random double-deallocate when inherited in python.
        del self.transpiler
        del main
        del startup
        gc.collect()
Q
qiaolongfei 已提交
112 113 114 115


class TestBasicModel(TranspilerTest):
    def transpiler_test_impl(self):
W
Wu Yi 已提交
116 117 118
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

G
gongweibao 已提交
119 120
        trainer, trainer_startup = self.get_trainer()

T
tianshuo78520a 已提交
121
        # split var blocks should be in startup program
G
gongweibao 已提交
122 123 124 125 126 127 128 129
        self.assertTrue("fc_w.block0" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w.block1" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w" in trainer_startup.global_block().vars)
        self.assertTrue("fc_b" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w@GRAD" not in trainer_startup.global_block().vars)
        self.assertTrue("fc_b@GRAD" not in trainer_startup.global_block().vars)

        src = [op.type for op in trainer_startup.global_block().ops]
130 131 132 133 134 135 136 137 138
        dst = [
            'fill_constant',
            'fill_constant',
            'uniform_random',
            'recv',
            'recv',
            'fetch_barrier',
            'concat',
        ]
G
gongweibao 已提交
139 140

        self.assertEqual(src, dst)
W
Wu Yi 已提交
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        self.assertEqual(
            [op.type for op in trainer.global_block().ops],
            [
                'mul',
                'elementwise_add',
                'elementwise_sub',
                'square',
                'mean',
                'fill_constant',
                'mean_grad',
                'square_grad',
                'elementwise_sub_grad',
                'elementwise_add_grad',
                'send',
                'mul_grad',
                'split_byref',
                'send',
                'send_barrier',
                'recv',
                'recv',
                'fetch_barrier',
                'concat',
            ],
        )
Y
Yancey 已提交
166 167 168

        self.assertEqual(len(pserver.blocks), 3)
        # block0: listen_and_serv
169 170 171
        self.assertEqual(
            [op.type for op in pserver.blocks[0].ops], ["listen_and_serv"]
        )
W
Wu Yi 已提交
172
        # block1~2: optimize pass
173 174 175
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops], ["sum", "scale", "sgd"]
        )
Y
Yancey 已提交
176
        # confirm startup program
177 178 179 180
        self.assertEqual(
            [op.type for op in startup.global_block().ops],
            ["fill_constant", "fill_constant", "uniform_random"],
        )
Y
Yancey1989 已提交
181
        # the variable #fc_w will be split into two blocks
Y
Yancey 已提交
182 183
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
W
Wu Yi 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


G
gongweibao 已提交
205
class TestBasicModelWithLargeBlockSize(TranspilerTest):
Q
qiaolongfei 已提交
206
    def transpiler_test_impl(self):
G
gongweibao 已提交
207 208 209 210 211 212
        config = fluid.DistributeTranspilerConfig()
        config.min_block_size = 1048576

        pserver, startup = self.get_pserver(self.pserver1_ep, config)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep, config)

G
gongweibao 已提交
213
        trainer, _ = self.get_trainer(config)
G
gongweibao 已提交
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        self.assertEqual(
            [op.type for op in trainer.global_block().ops],
            [
                'mul',
                'elementwise_add',
                'elementwise_sub',
                'square',
                'mean',
                'fill_constant',
                'mean_grad',
                'square_grad',
                'elementwise_sub_grad',
                'elementwise_add_grad',
                'send',
                'mul_grad',
                'send',
                'send_barrier',
                'recv',
                'recv',
                'fetch_barrier',
            ],
        )
G
gongweibao 已提交
237 238 239

        self.assertEqual(len(pserver.blocks), 2)
        # block0: listen_and_serv
240 241 242
        self.assertEqual(
            [op.type for op in pserver.blocks[0].ops], ["listen_and_serv"]
        )
G
gongweibao 已提交
243
        # block1~2: optimize pass
244 245 246
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops], ["sum", "scale", "sgd"]
        )
G
gongweibao 已提交
247
        # confirm startup program
248 249 250 251
        self.assertEqual(
            [op.type for op in startup.global_block().ops],
            ["fill_constant", "fill_constant"],
        )
G
gongweibao 已提交
252 253
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup2.global_block().var("fc_w")
254
        self.assertEqual(fc_w_var.shape, (1000, 1000))
G
gongweibao 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


W
Wu Yi 已提交
276 277 278 279
class TestNoSliceVar(TranspilerTest):
    def setUp(self):
        super(TestNoSliceVar, self).setUp()

Q
qiaolongfei 已提交
280
    def transpiler_test_impl(self):
G
gongweibao 已提交
281 282 283 284 285
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        _, startup = self.get_pserver(self.pserver1_ep, config)
        _, startup2 = self.get_pserver(self.pserver2_ep, config)
W
Wu Yi 已提交
286

287
        if "fc_w" in startup.global_block().vars:
W
Wu Yi 已提交
288
            fc_w_var = startup.global_block().vars["fc_w"]
289
        elif "fc_w" in startup2.global_block().vars:
W
Wu Yi 已提交
290 291 292
            fc_w_var = startup2.global_block().vars["fc_w"]

        self.assertEqual(fc_w_var.shape, (1000, 1000))
Y
Yancey 已提交
293 294


W
Wu Yi 已提交
295 296 297
class TestLRDecay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
298 299 300 301 302 303 304
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
W
Wu Yi 已提交
305 306
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
307
        avg_cost = paddle.mean(cost)
W
Wu Yi 已提交
308
        sgd_optimizer = fluid.optimizer.SGD(
309 310 311 312 313 314 315
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=1.0,
                decay_steps=2100,
                decay_rate=0.1,
                staircase=True,
            )
        )
W
Wu Yi 已提交
316 317
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
318
    def transpiler_test_impl(self):
W
Wu Yi 已提交
319
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
320
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
321 322 323

        self.assertEqual(len(pserver.blocks), 4)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
324 325 326 327 328 329 330 331 332 333 334 335 336 337
        self.assertEqual(
            lr_decay_ops,
            [
                "increment",
                "cast",
                "fill_constant",
                "elementwise_div",
                "floor",
                "fill_constant",
                "elementwise_pow",
                "fill_constant",
                "elementwise_mul",
            ],
        )
W
Wu Yi 已提交
338 339


T
tangwei12 已提交
340 341 342 343
class TestFakeInit(TranspilerTest):
    def net_conf(self):
        dict_size, embedding_size, neg_num = 10000, 8, 5

344 345 346 347 348 349 350 351 352
        input_word = fluid.layers.data(
            name="input_word", shape=[1], dtype='int64', lod_level=1
        )
        true_word = fluid.layers.data(
            name='true_label', shape=[1], dtype='int64', lod_level=1
        )
        neg_word = fluid.layers.data(
            name="neg_label", shape=[1], dtype='int64', lod_level=1
        )
T
tangwei12 已提交
353 354 355 356 357 358 359
        inputs = [input_word, true_word, neg_word]

        init_width = 0.5 / embedding_size
        input_emb = fluid.layers.embedding(
            input=inputs[0],
            is_sparse=True,
            size=[dict_size, embedding_size],
360 361 362 363 364
            param_attr=fluid.ParamAttr(
                name='emb',
                initializer=fluid.initializer.Uniform(-init_width, init_width),
            ),
        )
T
tangwei12 已提交
365 366 367 368 369 370

        true_emb_w = fluid.layers.embedding(
            input=inputs[1],
            is_sparse=True,
            size=[dict_size, embedding_size],
            param_attr=fluid.ParamAttr(
371 372 373
                name='emb_w', initializer=fluid.initializer.Constant(value=0.0)
            ),
        )
T
tangwei12 已提交
374 375 376 377 378 379

        true_emb_b = fluid.layers.embedding(
            input=inputs[1],
            is_sparse=True,
            size=[dict_size, 1],
            param_attr=fluid.ParamAttr(
380 381 382
                name='emb_b', initializer=fluid.initializer.Constant(value=0.0)
            ),
        )
T
tangwei12 已提交
383 384 385 386

        neg_word_reshape = fluid.layers.reshape(inputs[2], shape=[-1, 1])
        neg_word_reshape.stop_gradient = True

387 388 389 390 391 392
        neg_emb_w = fluid.layers.embedding(
            input=neg_word_reshape,
            is_sparse=True,
            size=[dict_size, embedding_size],
            param_attr=fluid.ParamAttr(name='emb_w', learning_rate=1.0),
        )
T
tangwei12 已提交
393

394 395 396
        neg_emb_w_re = fluid.layers.reshape(
            neg_emb_w, shape=[-1, neg_num, embedding_size]
        )
T
tangwei12 已提交
397

398 399 400 401 402 403
        neg_emb_b = fluid.layers.embedding(
            input=neg_word_reshape,
            is_sparse=True,
            size=[dict_size, 1],
            param_attr=fluid.ParamAttr(name='emb_b', learning_rate=1.0),
        )
T
tangwei12 已提交
404 405 406 407

        neg_emb_b_vec = fluid.layers.reshape(neg_emb_b, shape=[-1, neg_num])

        true_logits = fluid.layers.elementwise_add(
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
            fluid.layers.reduce_sum(
                fluid.layers.elementwise_mul(input_emb, true_emb_w),
                dim=1,
                keep_dim=True,
            ),
            true_emb_b,
        )

        input_emb_re = fluid.layers.reshape(
            input_emb, shape=[-1, 1, embedding_size]
        )

        neg_matmul = fluid.layers.matmul(
            input_emb_re, neg_emb_w_re, transpose_y=True
        )
T
tangwei12 已提交
423 424 425
        neg_matmul_re = fluid.layers.reshape(neg_matmul, shape=[-1, neg_num])
        neg_logits = fluid.layers.elementwise_add(neg_matmul_re, neg_emb_b_vec)
        # nce loss
426 427 428
        label_ones = fluid.layers.fill_constant_batch_size_like(
            true_logits, shape=[-1, 1], value=1.0, dtype='float32'
        )
T
tangwei12 已提交
429
        label_zeros = fluid.layers.fill_constant_batch_size_like(
430 431
            true_logits, shape=[-1, neg_num], value=0.0, dtype='float32'
        )
T
tangwei12 已提交
432

433
        true_xent = fluid.layers.sigmoid_cross_entropy_with_logits(
434 435
            true_logits, label_ones
        )
436
        neg_xent = fluid.layers.sigmoid_cross_entropy_with_logits(
437 438
            neg_logits, label_zeros
        )
T
tangwei12 已提交
439
        cost = fluid.layers.elementwise_add(
440
            fluid.layers.reduce_sum(true_xent, dim=1),
441 442
            fluid.layers.reduce_sum(neg_xent, dim=1),
        )
T
tangwei12 已提交
443 444 445
        avg_cost = fluid.layers.reduce_mean(cost)

        sgd_optimizer = fluid.optimizer.SGD(
446 447 448 449 450 451 452
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=1.0,
                decay_steps=2100,
                decay_rate=0.1,
                staircase=True,
            )
        )
T
tangwei12 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465
        sgd_optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        trainer, startup = self.get_trainer()

        fake_init_ops = []
        for op in startup.global_block().ops:
            if op.type == "fake_init":
                fake_init_ops.append(op)

        self.assertEqual(len(fake_init_ops), 3)


466 467 468
class TestDecayedAdagrad(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
469 470 471 472 473 474 475
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
476 477
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
478
        avg_cost = paddle.mean(cost)
479 480 481 482 483 484 485 486
        opt = fluid.optimizer.DecayedAdagrad(learning_rate=0.1)
        opt.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer, _ = self.get_trainer()


487 488 489
class TestFtrl(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
490 491 492 493 494 495 496
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
497 498
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
499
        avg_cost = paddle.mean(cost)
500 501 502 503 504 505 506 507
        opt = fluid.optimizer.Ftrl(learning_rate=0.1)
        opt.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer, _ = self.get_trainer()


W
Wu Yi 已提交
508 509 510
class TestLRDecayConditional(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
511 512 513 514 515 516 517
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
W
Wu Yi 已提交
518 519
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
520
        avg_cost = paddle.mean(cost)
W
Wu Yi 已提交
521
        sgd_optimizer = fluid.optimizer.SGD(
522 523 524 525
            learning_rate=fluid.layers.piecewise_decay(
                [10000, 20000], [1.0, 0.5, 1.0]
            )
        )
W
Wu Yi 已提交
526 527
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
528
    def transpiler_test_impl(self):
W
Wu Yi 已提交
529
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
530
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
531 532 533 534

        serv_op = pserver.blocks[0].ops[0]
        sub_blocks = []
        optimize_blocks = []
G
gongweibao 已提交
535
        for b in serv_op.all_attrs()["optimize_blocks"]:
W
Wu Yi 已提交
536 537 538 539 540 541 542
            optimize_blocks.append(b.idx)
        for b in pserver.blocks:
            if b.idx not in optimize_blocks:
                sub_blocks.append(b.idx)

        self.assertEqual(len(pserver.blocks), 7)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        self.assertEqual(
            lr_decay_ops,
            [
                "increment",
                "cast",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "conditional_block",
            ],
        )
W
Wu Yi 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        # test the condition blocks
        for b in sub_blocks:
            if b == 0:
                continue
            block = pserver.blocks[b]
            self.assertEqual([op.type for op in block.ops], ["assign"])


class TestL2Decay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
579 580 581 582 583
            param_attr=fluid.ParamAttr(
                name='fc_w', regularizer=fluid.regularizer.L2Decay()
            ),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
W
Wu Yi 已提交
584 585
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
586
        avg_cost = paddle.mean(cost)
W
Wu Yi 已提交
587
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
588 589 590 591 592 593

        def filter(param):
            return param.name == "fc_w"

        clip = fluid.clip.GradientClipByValue(0.1, need_clip=filter)
        sgd_optimizer.minimize(avg_cost, grad_clip=clip)
W
Wu Yi 已提交
594

Q
qiaolongfei 已提交
595
    def transpiler_test_impl(self):
W
Wu Yi 已提交
596
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
597
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
598 599

        self.assertEqual(len(pserver.blocks), 3)
600 601 602 603 604 605 606 607
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops],
            ["sum", "scale", "clip", "sgd"],
        )
        self.assertEqual(
            [op.type for op in pserver.blocks[2].ops],
            ["sum", "scale", "clip", "scale", "sum", "sgd"],
        )
W
Wu Yi 已提交
608 609
        # TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer

Y
Yancey 已提交
610

T
typhoonzero 已提交
611 612 613
class TestL2DecayWithPiecewise(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
614 615 616 617 618 619 620
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
T
typhoonzero 已提交
621 622
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
623
        avg_cost = paddle.mean(cost)
T
typhoonzero 已提交
624 625 626 627
        base_lr = 1.0
        bd = [1, 10, 20, 30]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
        sgd_optimizer = fluid.optimizer.Momentum(
628 629 630
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr
            ),
T
typhoonzero 已提交
631
            momentum=0.9,
632 633
            regularization=fluid.regularizer.L2Decay(1e-4),
        )
T
typhoonzero 已提交
634 635
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
636
    def transpiler_test_impl(self):
T
typhoonzero 已提交
637
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
638
        trainer, _ = self.get_trainer()
T
typhoonzero 已提交
639 640

        self.assertEqual(len(pserver.blocks), 9)
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops],
            [
                "increment",
                "cast",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "fill_constant",
                "less_than",
                "logical_not",
                "logical_and",
                "logical_and",
                "conditional_block",
                "fill_constant",
                "conditional_block",
            ],
        )
        self.assertEqual(
            [op.type for op in pserver.blocks[7].ops],
            ["sum", "scale", "scale", "sum", "momentum"],
        )
        self.assertEqual(
            [op.type for op in pserver.blocks[8].ops],
            ["sum", "scale", "scale", "sum", "momentum"],
        )
Y
Yancey 已提交
684 685


Q
Qiao Longfei 已提交
686 687 688 689
class TestEmptyPserverOptimizeBlocks(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        # only one parameter
690 691 692 693 694 695 696
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=False,
        )
Q
Qiao Longfei 已提交
697 698
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
699
        avg_cost = paddle.mean(cost)
Q
Qiao Longfei 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=1.0)
        sgd_optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        pserver, startup = self.get_pserver(ep=self.pserver2_ep, config=config)

        self.assertEqual(len(pserver.blocks), 2)
        self.assertEqual(len(pserver.blocks[1].ops), 0)


713
class TestDistLookupTableBase(TranspilerTest):
Q
Qiao Longfei 已提交
714
    def network_with_table(self, is_sparse, is_distributed):
T
tangwei12 已提交
715 716
        self.table_size = 1000
        self.emb_size = 64
T
tangwei12 已提交
717
        self.lookup_table_name = 'shared_w'
T
tangwei12 已提交
718

Q
Qiao Longfei 已提交
719
        def emb_pool(ids, table_name, is_distributed):
720 721 722 723 724 725 726 727
            emb = fluid.layers.embedding(
                input=ids,
                size=[self.table_size, self.emb_size],
                dtype='float32',
                param_attr=table_name,
                is_sparse=is_sparse,
                is_distributed=is_distributed,
            )
728 729 730
            pool = fluid.layers.sequence_pool(input=emb, pool_type='average')
            return pool

731 732 733 734 735 736 737 738 739
        title_ids = fluid.layers.data(
            name='title_ids', shape=[1], dtype='int64', lod_level=1
        )
        brand_ids = fluid.layers.data(
            name='brand_ids', shape=[1], dtype='int64', lod_level=1
        )
        profile_ids = fluid.layers.data(
            name='brand_ids', shape=[1], dtype='int64', lod_level=1
        )
Q
Qiao Longfei 已提交
740 741 742
        title_emb = emb_pool(title_ids, self.lookup_table_name, is_distributed)
        brand_emb = emb_pool(brand_ids, self.lookup_table_name, is_distributed)
        profile_emb = emb_pool(profile_ids, "profile_emb", False)
743 744 745 746 747 748 749 750 751 752
        fc0 = fluid.layers.concat(
            input=[title_emb, brand_emb, profile_emb], axis=1
        )
        predict = fluid.layers.fc(
            input=fc0,
            size=2,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
753 754 755

        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        cost = fluid.layers.cross_entropy(input=predict, label=label)
756
        avg_cost = paddle.mean(cost)
757 758 759 760
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)


Q
qiaolongfei 已提交
761 762 763 764 765 766 767
class TestLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

768
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
769 770
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
771 772 773 774
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
775 776
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
777 778 779 780
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
781

782 783
        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
784 785 786 787
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
788

G
gongweibao 已提交
789
        trainer, _ = self.get_trainer()
Q
qiaolongfei 已提交
790 791
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_selected_rows',
            'send',
            'send_barrier',
            'recv',
            'recv',
            'fetch_barrier',
Q
qiaolongfei 已提交
826 827 828 829
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


830 831 832 833 834 835 836
class TestDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

837
        self.assertEqual(len(pserver1.blocks), 6)
838 839
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
840 841 842 843
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
844
        # 4 prefetch -> lookup_sparse_table_read for data0
845 846 847 848
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
849
        # 2 optimize for table sgd
850 851 852
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops], ["sum", "sgd"]
        )
853
        # 3 prefetch -> lookup_sparse_table_read for data0
854 855 856 857
        self.assertEqual(
            [op.type for op in pserver1.blocks[4].ops],
            ["lookup_sparse_table_read"],
        )
Q
Qiao Longfei 已提交
858 859 860 861 862 863
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])

        trainer, trainer_startup = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
            'split_ids',
            'prefetch',
            'merge_ids',
            'sequence_pool',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_ids',
            'send',
            'send_barrier',
            'recv',
            'recv',
            'fetch_barrier',
Q
Qiao Longfei 已提交
899 900 901
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
        startup_ops = [
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'uniform_random',
            'uniform_random',
            'recv',
            'recv',
            'recv',
            'fetch_barrier',
            'concat',
            'fake_init',
Q
Qiao Longfei 已提交
924
        ]
925 926 927
        self.assertEqual(
            [op.type for op in trainer_startup.blocks[0].ops], startup_ops
        )
Q
Qiao Longfei 已提交
928 929


Q
qiaolongfei 已提交
930 931 932 933 934 935
class TestAsyncLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
Q
qiaolongfei 已提交
936
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
937

938
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
939 940
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
941 942 943 944
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
945 946
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
947 948 949 950
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["adam", "scale", "scale"],
        )
951 952
        # 3 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
953 954 955 956
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops],
            ["adam", "scale", "scale"],
        )
Q
qiaolongfei 已提交
957

G
gongweibao 已提交
958
        trainer, _ = self.get_trainer(config)
Q
qiaolongfei 已提交
959 960
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_selected_rows',
            'send',
            'recv',
            'recv',
Q
qiaolongfei 已提交
993 994 995 996
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Q
qiaolongfei 已提交
997 998 999 1000 1001 1002 1003
class TestAsyncDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()

Q
qiaolongfei 已提交
1004
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
1005

1006
        self.assertEqual(len(pserver1.blocks), 6)
Q
qiaolongfei 已提交
1007 1008
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
1009 1010 1011 1012
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["adam", "scale", "scale"],
        )
1013
        # 2 optimize for table adam
1014 1015 1016 1017
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["adam", "scale", "scale"],
        )
1018 1019
        # 3 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[3].ops], ["sgd"])
1020
        # 4 prefetch -> lookup_sparse_table_read for data0
1021 1022 1023 1024
        self.assertEqual(
            [op.type for op in pserver1.blocks[4].ops],
            ["lookup_sparse_table_read"],
        )
1025 1026
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])
Q
qiaolongfei 已提交
1027

Q
Qiao Longfei 已提交
1028
        trainer, trainer_startup = self.get_trainer(config)
Q
qiaolongfei 已提交
1029 1030
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
            'split_ids',
            'prefetch',
            'merge_ids',
            'sequence_pool',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_ids',
            'send',
            'recv',
            'recv',
Q
Qiao Longfei 已提交
1064
        ]
Q
qiaolongfei 已提交
1065
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
Q
Qiao Longfei 已提交
1066
        startup_ops = [
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'uniform_random',
            'uniform_random',
            'recv',
            'recv',
            'recv',
            'fetch_barrier',
            'concat',
            'fake_init',
Q
Qiao Longfei 已提交
1089
        ]
1090 1091 1092
        self.assertEqual(
            [op.type for op in trainer_startup.blocks[0].ops], startup_ops
        )
Q
qiaolongfei 已提交
1093 1094


T
tangwei12 已提交
1095
class TestDistLookupTableSliceSize(TestDistLookupTableBase):
T
tangwei12 已提交
1096 1097 1098 1099 1100
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
T
tangwei12 已提交
1101
        pserver1, _ = self.get_pserver(self.pserver1_ep, config)
T
tangwei12 已提交
1102 1103 1104

        self.assertTrue(self.transpiler.has_distributed_lookup_table)
        lookup_table_var = pserver1.global_block().vars[
1105 1106
            self.transpiler.table_name
        ]
T
tangwei12 已提交
1107 1108 1109
        row_size = lookup_table_var.shape[0]
        calc_row_size = int(math.ceil(self.table_size / self.pservers))
        self.assertEqual(row_size, calc_row_size)
T
tangwei12 已提交
1110 1111


T
tangwei12 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120
class TestDistArgsInProgram(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()

        self.assertTrue(trainer._is_distributed)
        self.assertTrue(trainer._is_chief)
1121 1122 1123 1124 1125 1126
        self.assertEqual(
            trainer._distributed_lookup_table, self.lookup_table_name
        )
        self.assertEqual(
            trainer._endpoints, [self.pserver1_ep, self.pserver2_ep]
        )
T
tangwei12 已提交
1127 1128


W
Wu Yi 已提交
1129 1130 1131
class TestRMSPropOptimizer(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
1132 1133 1134 1135 1136 1137 1138
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
W
Wu Yi 已提交
1139 1140
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1141
        avg_cost = paddle.mean(cost)
W
Wu Yi 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

        self.assertEqual(len(pserver.blocks), 3)
        # block1~2: optimize pass
1151 1152 1153 1154
        self.assertEqual(
            [op.type for op in pserver.blocks[1].ops],
            ["sum", "scale", "rmsprop"],
        )
W
Wu Yi 已提交
1155 1156 1157 1158 1159 1160 1161
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
        moment_var = startup.global_block().var("momentum_1")
        self.assertEqual(moment_var.shape, (500, 1000))


T
tangwei12 已提交
1162 1163 1164
class TestLoadSliceVar(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
1165 1166 1167 1168 1169 1170 1171
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(name='fc_w'),
            bias_attr=fluid.ParamAttr(name='fc_b'),
        )
T
tangwei12 已提交
1172 1173
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1174
        avg_cost = paddle.mean(cost)
T
tangwei12 已提交
1175 1176 1177 1178 1179 1180 1181
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, _ = self.get_pserver(self.pserver1_ep)
        pserver2, _ = self.get_pserver(self.pserver2_ep)

1182
        vars_ps1 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
1183 1184
            self.pserver1_ep
        )
1185
        vars_ps2 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
1186 1187
            self.pserver2_ep
        )
1188 1189 1190 1191

        self.assertTrue(vars_ps1)
        self.assertTrue(vars_ps2)

1192
        for idx in range(len(vars_ps1)):
1193 1194 1195 1196 1197 1198
            total_numel = 0
            ps1_numel, ps2_numel = 0, 0

            ps1_var = vars_ps1[idx]

            if not ps1_var.is_slice:
1199 1200 1201 1202 1203 1204
                total_numel = functools.reduce(
                    lambda x, y: x * y, vars_ps1[idx].origin.shape
                )
                ps1_numel = functools.reduce(
                    lambda x, y: x * y, vars_ps1[idx].slice.shape
                )
1205 1206 1207 1208 1209 1210 1211
            else:
                ps2_var = None
                for var in vars_ps2:
                    if var.origin.name == ps1_var.origin.name:
                        ps2_var = var
                        break

1212 1213 1214 1215 1216 1217 1218 1219 1220
                total_numel = functools.reduce(
                    lambda x, y: x * y, ps1_var.origin.shape
                )
                ps1_numel = functools.reduce(
                    lambda x, y: x * y, ps1_var.slice.shape
                )
                ps2_numel = functools.reduce(
                    lambda x, y: x * y, ps2_var.slice.shape
                )
1221 1222

            self.assertEqual(total_numel, ps1_numel + ps2_numel)
T
tangwei12 已提交
1223 1224


W
Wu Yi 已提交
1225 1226
class TestNCCL2Transpile(TranspilerTest):
    def test_nccl2_transpile(self):
T
tangwei12 已提交
1227
        if fluid.core.is_compiled_with_cuda():  # test nccl2 only with cuda
J
JiabinYang 已提交
1228 1229 1230 1231 1232 1233 1234
            main = fluid.Program()
            startup = fluid.Program()
            with fluid.program_guard(main, startup):
                self.net_conf()

            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
W
Wu Yi 已提交
1235
            config.wait_port = False
J
JiabinYang 已提交
1236
            t = fluid.DistributeTranspiler(config=config)
1237 1238 1239 1240 1241 1242
            t.transpile(
                0,
                trainers="127.0.0.1:6174,127.0.0.1:6175",
                current_endpoint="127.0.0.1:6174",
                startup_program=startup,
            )
J
JiabinYang 已提交
1243 1244 1245
            print([op.type for op in startup.global_block().ops])
            self.assertEqual(startup.global_block().ops[-1].type, "gen_nccl_id")
            self.assertIsNotNone(startup.global_block().vars.get("NCCLID"))
1246
            gc.collect()
J
JiabinYang 已提交
1247 1248
        else:
            pass
W
Wu Yi 已提交
1249 1250


Q
Qiao Longfei 已提交
1251 1252 1253
# test for remote prefetch
class TestRemoteLookupTable(TestDistLookupTableBase):
    def net_conf(self):
1254
        import os
1255

1256
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
Q
Qiao Longfei 已提交
1257
        self.network_with_table(is_sparse=True, is_distributed=False)
Q
Qiao Longfei 已提交
1258 1259 1260 1261 1262 1263 1264

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

        self.assertEqual(len(pserver1.blocks), 4)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
1265 1266 1267 1268
        self.assertEqual(
            [op.type for op in pserver1.blocks[1].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
1269 1270
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
1271 1272 1273 1274
        self.assertEqual(
            [op.type for op in pserver1.blocks[2].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
1275 1276 1277

        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
1278 1279 1280 1281
        self.assertEqual(
            [op.type for op in pserver1.blocks[3].ops],
            ["sum", "scale", "adam", "scale", "scale"],
        )
Q
Qiao Longfei 已提交
1282 1283 1284 1285

        trainer, _ = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'lookup_table',
            'sequence_pool',
            'concat',
            'mul',
            'elementwise_add',
            'cross_entropy2',
            'mean',
            'fill_constant',
            'mean_grad',
            'cross_entropy_grad2',
            'elementwise_add_grad',
            'send',
            'mul_grad',
            'send',
            'concat_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'split_selected_rows',
            'send',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sequence_pool_grad',
            'lookup_table_grad',
            'sum',
            'split_selected_rows',
            'send',
            'send_barrier',
            'recv',
            'recv',
            'fetch_barrier',
Q
Qiao Longfei 已提交
1320 1321 1322 1323
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
# test for remote prefetch
class TestRemoteNce(TestDistLookupTableBase):
    def network_with_table(self, is_sparse, is_distributed):

        num_total_classes = 20
        sampler = "uniform"
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

        input = fluid.layers.data(name="input", shape=[10], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        w_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[num_total_classes, 10],
                dtype='float32',
                name='nce_w',
                initializer=fluid.initializer.ConstantInitializer(),
            )
        )
        b_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[num_total_classes, 1],
                dtype='float32',
                name='nce_b',
                initializer=fluid.initializer.ConstantInitializer(),
            )
        )

        cost = fluid.layers.nce(
            input=input,
            label=label,
            num_total_classes=num_total_classes,
            sampler=sampler,
            custom_dist=nid_freq_arr.tolist(),
            sample_weight=None,
            param_attr='nce_w',
            bias_attr='nce_b',
            seed=1,
            num_neg_samples=5,
            is_sparse=is_sparse,
        )
1369
        avg_cost = paddle.mean(cost)
1370 1371 1372 1373 1374 1375
        # optimizer
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
1376

1377 1378 1379 1380 1381
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
T
tangwei12 已提交
1382

1383 1384
        out_vars = ["nce_w"]
        in_vars = ["nce_b"]
T
tangwei12 已提交
1385 1386 1387

        recv_var_names = []

1388 1389
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
T
tangwei12 已提交
1390 1391 1392 1393 1394 1395 1396
                for var in op.output("Out"):
                    recv_var_names.append(var)

        for out_var in out_vars:
            self.assertFalse(out_var in recv_var_names)
        for in_var in in_vars:
            self.assertTrue(in_var in recv_var_names)
1397 1398


J
JiabinYang 已提交
1399 1400 1401 1402
# test for remote prefetch
class TestRemoteHsigmoid(TestDistLookupTableBase):
    def network_with_table(self, is_sparse, is_distributed):

1403
        num_total_classes = 3
J
JiabinYang 已提交
1404

1405
        input = fluid.layers.data(name="input", shape=[1], dtype="float32")
J
JiabinYang 已提交
1406
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        path_table = fluid.layers.data(
            name='path_table', shape=[3], dtype='int64'
        )
        path_code = fluid.layers.data(
            name='path_code', shape=[3], dtype='int64'
        )
        w_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[num_total_classes, 10],
                dtype='float32',
                name='hs_w',
                initializer=fluid.initializer.ConstantInitializer(),
            )
        )
        b_param = (
            fluid.default_main_program()
            .global_block()
            .create_parameter(
                shape=[3, 1],
                dtype='float32',
                name='hs_b',
                initializer=fluid.initializer.ConstantInitializer(),
            )
        )
J
JiabinYang 已提交
1433

1434
        emb = fluid.layers.embedding(
J
JiabinYang 已提交
1435
            input=input,
1436 1437
            is_sparse=is_sparse,
            size=[3, 3],
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Normal(
                    scale=1 / math.sqrt(num_total_classes)
                )
            ),
        )

        cost = fluid.layers.hsigmoid(
            input=emb,
            label=label,
            num_classes=num_total_classes,
            path_table=path_table,
            path_code=path_code,
            is_custom=True,
            is_sparse=is_sparse,
        )
1454
        avg_cost = paddle.mean(cost)
J
JiabinYang 已提交
1455 1456 1457 1458 1459 1460
        # optimizer
        optimizer = fluid.optimizer.SGD(learning_rate=0.003)
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
1461

J
JiabinYang 已提交
1462 1463 1464 1465 1466
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
1467
        params_to_check = list()
J
JiabinYang 已提交
1468
        for op in trainer.blocks[0].ops:
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
            if op.type == "hierarchical_sigmoid":
                params_to_check = [op.input("W")[0], op.input("Bias")[0]]
                for name in ["epmap", "table_names", "epmap"]:
                    assert op.has_attr(name)
                    if name == "epmap":
                        assert op.attr(name)[0] == u'127.0.0.1:6174'
                    elif name == "table_names":
                        assert op.attr(name)[0] == u'hierarchical_sigmoid_0.w_0'
                    else:
                        assert op.attr(name) == 3
            elif op.type == "lookup_table":
                params_to_check.append(op.input("W")[0])
            else:
J
JiabinYang 已提交
1482
                pass
1483 1484 1485 1486 1487 1488 1489
        op_count = 0
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
                assert len(op.output("Out")) == 1
                assert op.output("Out")[0] == u'hierarchical_sigmoid_0.b_0'
                op_count += 1
        assert op_count == 1
J
JiabinYang 已提交
1490 1491


Y
Yancey 已提交
1492 1493
if __name__ == "__main__":
    unittest.main()