test_dist_transpiler.py 46.1 KB
Newer Older
Y
Yancey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import traceback
T
tangwei12 已提交
18
import math
19
import collections
T
tangwei12 已提交
20

21
import six
22
import unittest
23 24
import numpy as np

25
import gc
T
tangwei12 已提交
26

27 28
gc.set_debug(gc.DEBUG_COLLECTABLE)

29
import paddle.fluid as fluid
30

Y
Yancey 已提交
31

W
Wu Yi 已提交
32
class TranspilerTest(unittest.TestCase):
Y
Yancey 已提交
33
    def setUp(self):
W
Wu Yi 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
        self.trainer_id = 0
        self.trainers = 2
        self.pservers = 2
        # NOTE: we do not actually bind this port
        self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
        self.pserver1_ep = "127.0.0.1:6174"
        self.pserver2_ep = "127.0.0.1:6175"
        self.sync_mode = True
        self.transpiler = None

    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)

    def get_main_program(self):
        main = fluid.Program()
59
        main.random_seed = 1
W
Wu Yi 已提交
60 61 62 63 64
        with fluid.program_guard(main):
            self.net_conf()
        self.origin_prog = main.clone()
        return main

1
123malin 已提交
65
    def get_trainer(self, config=None, sync_mode=True):
G
gongweibao 已提交
66 67
        src = fluid.default_startup_program().clone()

1
123malin 已提交
68
        t = self._transpiler_instance(config, sync_mode=True)
G
gongweibao 已提交
69

W
Wu Yi 已提交
70
        trainer_main = t.get_trainer_program(wait_port=False)
G
gongweibao 已提交
71 72 73 74 75 76
        trainer_startup = fluid.default_startup_program()

        assert (src.num_blocks == 1)
        assert (trainer_startup.num_blocks == src.num_blocks)

        return trainer_main, trainer_startup
W
Wu Yi 已提交
77

Q
qiaolongfei 已提交
78 79
    def get_pserver(self, ep, config=None, sync_mode=True):
        t = self._transpiler_instance(config, sync_mode)
W
Wu Yi 已提交
80 81 82 83
        pserver = t.get_pserver_program(ep)
        startup = t.get_startup_program(ep, pserver)
        return pserver, startup

Q
qiaolongfei 已提交
84
    def _transpiler_instance(self, config=None, sync_mode=True):
W
Wu Yi 已提交
85 86
        if not self.transpiler:
            main = self.get_main_program()
G
gongweibao 已提交
87
            self.transpiler = fluid.DistributeTranspiler(config=config)
W
Wu Yi 已提交
88 89 90 91
            self.transpiler.transpile(
                self.trainer_id,
                program=main,
                pservers=self.pserver_eps,
Q
qiaolongfei 已提交
92 93
                trainers=self.trainers,
                sync_mode=sync_mode)
G
gongweibao 已提交
94

W
Wu Yi 已提交
95
        return self.transpiler
Y
Yancey 已提交
96

Q
qiaolongfei 已提交
97 98
    def transpiler_test_impl(self):
        pass
W
Wu Yi 已提交
99

Y
Yancey 已提交
100
    def test_transpiler(self):
Q
qiaolongfei 已提交
101 102
        main = fluid.Program()
        startup = fluid.Program()
T
tangwei12 已提交
103 104 105
        with fluid.unique_name.guard():
            with fluid.program_guard(main, startup):
                self.transpiler_test_impl()
106 107 108 109 110 111
        # NOTE: run gc.collect to eliminate pybind side objects to
        # prevent random double-deallocate when inherited in python.
        del self.transpiler
        del main
        del startup
        gc.collect()
Q
qiaolongfei 已提交
112 113 114 115


class TestBasicModel(TranspilerTest):
    def transpiler_test_impl(self):
W
Wu Yi 已提交
116 117 118
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

G
gongweibao 已提交
119 120
        trainer, trainer_startup = self.get_trainer()

T
tianshuo78520a 已提交
121
        # split var blocks should be in startup program
G
gongweibao 已提交
122 123 124 125 126 127 128 129 130 131 132 133
        self.assertTrue("fc_w.block0" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w.block1" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w" in trainer_startup.global_block().vars)
        self.assertTrue("fc_b" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w@GRAD" not in trainer_startup.global_block().vars)
        self.assertTrue("fc_b@GRAD" not in trainer_startup.global_block().vars)

        src = [op.type for op in trainer_startup.global_block().ops]
        dst = ['fill_constant', 'fill_constant', 'uniform_random', 'recv', 'recv', \
               'fetch_barrier', 'concat']

        self.assertEqual(src, dst)
W
Wu Yi 已提交
134 135 136 137 138 139 140

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'split_byref', 'send',
            'send_barrier', 'recv', 'recv', 'fetch_barrier', 'concat'
        ])
Y
Yancey 已提交
141 142 143 144 145

        self.assertEqual(len(pserver.blocks), 3)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
W
Wu Yi 已提交
146
        # block1~2: optimize pass
Y
Yancey 已提交
147 148 149
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
W
Wu Yi 已提交
150 151
        self.assertEqual([op.type for op in startup.global_block().ops],
                         ["fill_constant", "fill_constant", "uniform_random"])
Y
Yancey1989 已提交
152
        # the variable #fc_w will be split into two blocks
Y
Yancey 已提交
153 154
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
W
Wu Yi 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


G
gongweibao 已提交
176
class TestBasicModelWithLargeBlockSize(TranspilerTest):
Q
qiaolongfei 已提交
177
    def transpiler_test_impl(self):
G
gongweibao 已提交
178 179 180 181 182 183
        config = fluid.DistributeTranspilerConfig()
        config.min_block_size = 1048576

        pserver, startup = self.get_pserver(self.pserver1_ep, config)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep, config)

G
gongweibao 已提交
184
        trainer, _ = self.get_trainer(config)
G
gongweibao 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'send_barrier',
            'recv', 'recv', 'fetch_barrier'
        ])

        self.assertEqual(len(pserver.blocks), 2)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
        # block1~2: optimize pass
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
        self.assertEqual([op.type for op in startup.global_block().ops],
Q
qiaolongfei 已提交
202
                         ["fill_constant", "fill_constant"])
G
gongweibao 已提交
203 204
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup2.global_block().var("fc_w")
205
        self.assertEqual(fc_w_var.shape, (1000, 1000))
G
gongweibao 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


W
Wu Yi 已提交
227 228 229 230
class TestNoSliceVar(TranspilerTest):
    def setUp(self):
        super(TestNoSliceVar, self).setUp()

Q
qiaolongfei 已提交
231
    def transpiler_test_impl(self):
G
gongweibao 已提交
232 233 234 235 236
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        _, startup = self.get_pserver(self.pserver1_ep, config)
        _, startup2 = self.get_pserver(self.pserver2_ep, config)
W
Wu Yi 已提交
237

238
        if "fc_w" in startup.global_block().vars:
W
Wu Yi 已提交
239
            fc_w_var = startup.global_block().vars["fc_w"]
240
        elif "fc_w" in startup2.global_block().vars:
W
Wu Yi 已提交
241 242 243
            fc_w_var = startup2.global_block().vars["fc_w"]

        self.assertEqual(fc_w_var.shape, (1000, 1000))
Y
Yancey 已提交
244 245


W
Wu Yi 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
class TestLRDecay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=1.0,
                decay_steps=2100,
                decay_rate=0.1,
                staircase=True))
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
265
    def transpiler_test_impl(self):
W
Wu Yi 已提交
266
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
267
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
268 269 270 271 272 273 274 275 276 277

        self.assertEqual(len(pserver.blocks), 4)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "elementwise_div", "floor",
            "fill_constant", "elementwise_pow", "fill_constant",
            "elementwise_mul"
        ])


T
tangwei12 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
class TestFakeInit(TranspilerTest):
    def net_conf(self):
        dict_size, embedding_size, neg_num = 10000, 8, 5

        input_word = fluid.layers.data(
            name="input_word", shape=[1], dtype='int64', lod_level=1)
        true_word = fluid.layers.data(
            name='true_label', shape=[1], dtype='int64', lod_level=1)
        neg_word = fluid.layers.data(
            name="neg_label", shape=[1], dtype='int64', lod_level=1)
        inputs = [input_word, true_word, neg_word]

        init_width = 0.5 / embedding_size
        input_emb = fluid.layers.embedding(
            input=inputs[0],
            is_sparse=True,
            size=[dict_size, embedding_size],
            param_attr=fluid.ParamAttr(
                name='emb',
                initializer=fluid.initializer.Uniform(-init_width, init_width)))

        true_emb_w = fluid.layers.embedding(
            input=inputs[1],
            is_sparse=True,
            size=[dict_size, embedding_size],
            param_attr=fluid.ParamAttr(
                name='emb_w',
                initializer=fluid.initializer.Constant(value=0.0)))

        true_emb_b = fluid.layers.embedding(
            input=inputs[1],
            is_sparse=True,
            size=[dict_size, 1],
            param_attr=fluid.ParamAttr(
                name='emb_b',
                initializer=fluid.initializer.Constant(value=0.0)))

        neg_word_reshape = fluid.layers.reshape(inputs[2], shape=[-1, 1])
        neg_word_reshape.stop_gradient = True

        neg_emb_w = fluid.layers.embedding(
            input=neg_word_reshape,
            is_sparse=True,
            size=[dict_size, embedding_size],
            param_attr=fluid.ParamAttr(
                name='emb_w', learning_rate=1.0))

        neg_emb_w_re = fluid.layers.reshape(
            neg_emb_w, shape=[-1, neg_num, embedding_size])

        neg_emb_b = fluid.layers.embedding(
            input=neg_word_reshape,
            is_sparse=True,
            size=[dict_size, 1],
            param_attr=fluid.ParamAttr(
                name='emb_b', learning_rate=1.0))

        neg_emb_b_vec = fluid.layers.reshape(neg_emb_b, shape=[-1, neg_num])

        true_logits = fluid.layers.elementwise_add(
            fluid.layers.reduce_sum(
                fluid.layers.elementwise_mul(input_emb, true_emb_w),
                dim=1,
                keep_dim=True),
            true_emb_b)

        input_emb_re = fluid.layers.reshape(
            input_emb, shape=[-1, 1, embedding_size])

        neg_matmul = fluid.layers.matmul(
            input_emb_re, neg_emb_w_re, transpose_y=True)
        neg_matmul_re = fluid.layers.reshape(neg_matmul, shape=[-1, neg_num])
        neg_logits = fluid.layers.elementwise_add(neg_matmul_re, neg_emb_b_vec)
        # nce loss
        label_ones = fluid.layers.fill_constant_batch_size_like(
            true_logits, shape=[-1, 1], value=1.0, dtype='float32')
        label_zeros = fluid.layers.fill_constant_batch_size_like(
            true_logits, shape=[-1, neg_num], value=0.0, dtype='float32')

        true_xent = fluid.layers.sigmoid_cross_entropy_with_logits(true_logits,
                                                                   label_ones)
        neg_xent = fluid.layers.sigmoid_cross_entropy_with_logits(neg_logits,
                                                                  label_zeros)
        cost = fluid.layers.elementwise_add(
            fluid.layers.reduce_sum(
                true_xent, dim=1),
            fluid.layers.reduce_sum(
                neg_xent, dim=1))
        avg_cost = fluid.layers.reduce_mean(cost)

        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=1.0,
                decay_steps=2100,
                decay_rate=0.1,
                staircase=True))
        sgd_optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        trainer, startup = self.get_trainer()

        fake_init_ops = []
        for op in startup.global_block().ops:
            if op.type == "fake_init":
                fake_init_ops.append(op)

        self.assertEqual(len(fake_init_ops), 3)


387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
class TestDecayedAdagrad(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        opt = fluid.optimizer.DecayedAdagrad(learning_rate=0.1)
        opt.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer, _ = self.get_trainer()


406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
class TestFtrl(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        opt = fluid.optimizer.Ftrl(learning_rate=0.1)
        opt.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer, _ = self.get_trainer()


W
Wu Yi 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
class TestLRDecayConditional(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.piecewise_decay([10000, 20000],
                                                       [1.0, 0.5, 1.0]))
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
441
    def transpiler_test_impl(self):
W
Wu Yi 已提交
442
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
443
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
444 445 446 447

        serv_op = pserver.blocks[0].ops[0]
        sub_blocks = []
        optimize_blocks = []
G
gongweibao 已提交
448
        for b in serv_op.all_attrs()["optimize_blocks"]:
W
Wu Yi 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
            optimize_blocks.append(b.idx)
        for b in pserver.blocks:
            if b.idx not in optimize_blocks:
                sub_blocks.append(b.idx)

        self.assertEqual(len(pserver.blocks), 7)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
        # test the condition blocks
        for b in sub_blocks:
            if b == 0:
                continue
            block = pserver.blocks[b]
            self.assertEqual([op.type for op in block.ops], ["assign"])


class TestL2Decay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(
479
                name='fc_w', regularizer=fluid.regularizer.L2Decay()),
W
Wu Yi 已提交
480 481 482 483 484
            bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
485 486 487 488 489 490

        def filter(param):
            return param.name == "fc_w"

        clip = fluid.clip.GradientClipByValue(0.1, need_clip=filter)
        sgd_optimizer.minimize(avg_cost, grad_clip=clip)
W
Wu Yi 已提交
491

Q
qiaolongfei 已提交
492
    def transpiler_test_impl(self):
W
Wu Yi 已提交
493
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
494
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
495 496 497 498

        self.assertEqual(len(pserver.blocks), 3)
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "clip", "sgd"])
C
chengduo 已提交
499 500
        self.assertEqual([op.type for op in pserver.blocks[2].ops],
                         ["sum", "scale", "clip", "scale", "sum", "sgd"])
W
Wu Yi 已提交
501 502
        # TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer

Y
Yancey 已提交
503

T
typhoonzero 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
class TestL2DecayWithPiecewise(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        base_lr = 1.0
        bd = [1, 10, 20, 30]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
        sgd_optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
525
    def transpiler_test_impl(self):
T
typhoonzero 已提交
526
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
527
        trainer, _ = self.get_trainer()
T
typhoonzero 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540

        self.assertEqual(len(pserver.blocks), 9)
        self.assertEqual([op.type for op in pserver.blocks[1].ops], [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
C
chengduo 已提交
541 542 543 544
        self.assertEqual([op.type for op in pserver.blocks[7].ops],
                         ["sum", "scale", "scale", "sum", "momentum"])
        self.assertEqual([op.type for op in pserver.blocks[8].ops],
                         ["sum", "scale", "scale", "sum", "momentum"])
Y
Yancey 已提交
545 546


Q
Qiao Longfei 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
class TestEmptyPserverOptimizeBlocks(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        # only one parameter
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=False)
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=1.0)
        sgd_optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        pserver, startup = self.get_pserver(ep=self.pserver2_ep, config=config)

        self.assertEqual(len(pserver.blocks), 2)
        self.assertEqual(len(pserver.blocks[1].ops), 0)


572
class TestDistLookupTableBase(TranspilerTest):
Q
Qiao Longfei 已提交
573
    def network_with_table(self, is_sparse, is_distributed):
T
tangwei12 已提交
574 575
        self.table_size = 1000
        self.emb_size = 64
T
tangwei12 已提交
576
        self.lookup_table_name = 'shared_w'
T
tangwei12 已提交
577

Q
Qiao Longfei 已提交
578
        def emb_pool(ids, table_name, is_distributed):
579 580
            emb = fluid.layers.embedding(
                input=ids,
T
tangwei12 已提交
581
                size=[self.table_size, self.emb_size],
582
                dtype='float32',
583
                param_attr=table_name,
584
                is_sparse=is_sparse,
Q
Qiao Longfei 已提交
585
                is_distributed=is_distributed)
586 587 588 589 590 591 592
            pool = fluid.layers.sequence_pool(input=emb, pool_type='average')
            return pool

        title_ids = fluid.layers.data(
            name='title_ids', shape=[1], dtype='int64', lod_level=1)
        brand_ids = fluid.layers.data(
            name='brand_ids', shape=[1], dtype='int64', lod_level=1)
593 594
        profile_ids = fluid.layers.data(
            name='brand_ids', shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
595 596 597
        title_emb = emb_pool(title_ids, self.lookup_table_name, is_distributed)
        brand_emb = emb_pool(brand_ids, self.lookup_table_name, is_distributed)
        profile_emb = emb_pool(profile_ids, "profile_emb", False)
Q
Qiao Longfei 已提交
598 599
        fc0 = fluid.layers.concat(
            input=[title_emb, brand_emb, profile_emb], axis=1)
600 601 602 603 604 605 606 607 608 609 610 611 612
        predict = fluid.layers.fc(input=fc0,
                                  size=2,
                                  act=None,
                                  param_attr=fluid.ParamAttr(name='fc_w'),
                                  bias_attr=fluid.ParamAttr(name='fc_b'))

        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)


Q
qiaolongfei 已提交
613 614 615 616 617 618 619
class TestLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

620
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
621 622 623 624 625 626 627
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
Q
qiaolongfei 已提交
628
                         ["sum", "scale", "adam", "scale", "scale"])
Q
qiaolongfei 已提交
629

630 631 632 633 634
        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["sum", "scale", "adam", "scale", "scale"])

G
gongweibao 已提交
635
        trainer, _ = self.get_trainer()
Q
qiaolongfei 已提交
636 637 638
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
Q
Qiao Longfei 已提交
639
            'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add',
S
sneaxiy 已提交
640 641
            'cross_entropy2', 'mean', 'fill_constant', 'mean_grad',
            'cross_entropy_grad2', 'elementwise_add_grad', 'send', 'mul_grad',
Q
Qiao Longfei 已提交
642 643 644 645
            'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'split_selected_rows', 'send', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sum', 'split_selected_rows', 'send', 'send_barrier', 'recv',
J
JiabinYang 已提交
646
            'recv', 'fetch_barrier'
Q
qiaolongfei 已提交
647 648 649 650
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


651 652 653 654 655 656 657
class TestDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

658
        self.assertEqual(len(pserver1.blocks), 6)
659 660 661 662
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
663
        # 4 prefetch -> lookup_sparse_table for data0
664
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
665
                         ["sum", "scale", "adam", "scale", "scale"])
Q
Qiao Longfei 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679
        # 2 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["sum", "sgd"])
        # 3 prefetch -> lookup_sparse_table for data0
        self.assertEqual([op.type for op in pserver1.blocks[4].ops],
                         ["lookup_sparse_table"])
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])

        trainer, trainer_startup = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool',
            'sequence_pool', 'lookup_table', 'sequence_pool', 'concat', 'mul',
S
sneaxiy 已提交
680 681
            'elementwise_add', 'cross_entropy2', 'mean', 'fill_constant',
            'mean_grad', 'cross_entropy_grad2', 'elementwise_add_grad', 'send',
Q
Qiao Longfei 已提交
682 683 684 685
            'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'split_selected_rows', 'send',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sum', 'split_ids', 'send', 'send_barrier',
686
            'recv', 'recv', 'fetch_barrier'
Q
Qiao Longfei 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
        startup_ops = [
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'uniform_random',
            'uniform_random', 'recv', 'recv', 'recv', 'fetch_barrier', 'concat',
            'fake_init'
        ]
        self.assertEqual([op.type for op in trainer_startup.blocks[0].ops],
                         startup_ops)


Q
qiaolongfei 已提交
701 702 703 704 705 706
class TestAsyncLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
Q
qiaolongfei 已提交
707
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
708

709
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
710 711 712 713 714 715 716 717
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["adam", "scale", "scale"])
718 719 720 721
        # 3 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["adam", "scale", "scale"])
Q
qiaolongfei 已提交
722

G
gongweibao 已提交
723
        trainer, _ = self.get_trainer(config)
Q
qiaolongfei 已提交
724 725 726
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
727
            'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add',
S
sneaxiy 已提交
728 729
            'cross_entropy2', 'mean', 'fill_constant', 'mean_grad',
            'cross_entropy_grad2', 'elementwise_add_grad', 'send', 'mul_grad',
Q
Qiao Longfei 已提交
730 731 732
            'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'split_selected_rows', 'send', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
J
JiabinYang 已提交
733
            'sum', 'split_selected_rows', 'send', 'recv', 'recv'
Q
qiaolongfei 已提交
734 735 736 737
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Q
qiaolongfei 已提交
738 739 740 741 742 743 744
class TestAsyncDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()

Q
qiaolongfei 已提交
745
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
746

747
        self.assertEqual(len(pserver1.blocks), 6)
Q
qiaolongfei 已提交
748 749 750 751
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
752 753 754 755 756 757 758
        # 2 optimize for table adam
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["adam", "scale", "scale"])
        # 3 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[3].ops], ["sgd"])
        # 4 prefetch -> lookup_sparse_table for data0
        self.assertEqual([op.type for op in pserver1.blocks[4].ops],
Q
qiaolongfei 已提交
759
                         ["lookup_sparse_table"])
760 761
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])
Q
qiaolongfei 已提交
762

Q
Qiao Longfei 已提交
763
        trainer, trainer_startup = self.get_trainer(config)
Q
qiaolongfei 已提交
764 765
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
S
seiriosPlus 已提交
766
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool',
Q
Qiao Longfei 已提交
767
            'sequence_pool', 'lookup_table', 'sequence_pool', 'concat', 'mul',
S
sneaxiy 已提交
768 769
            'elementwise_add', 'cross_entropy2', 'mean', 'fill_constant',
            'mean_grad', 'cross_entropy_grad2', 'elementwise_add_grad', 'send',
Q
Qiao Longfei 已提交
770 771 772
            'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'split_selected_rows', 'send',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
773
            'lookup_table_grad', 'sum', 'split_ids', 'send', 'recv', 'recv'
Q
Qiao Longfei 已提交
774
        ]
Q
qiaolongfei 已提交
775
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
Q
Qiao Longfei 已提交
776 777 778 779 780 781 782 783 784 785
        startup_ops = [
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'uniform_random',
            'uniform_random', 'recv', 'recv', 'recv', 'fetch_barrier', 'concat',
            'fake_init'
        ]
        self.assertEqual([op.type for op in trainer_startup.blocks[0].ops],
                         startup_ops)
Q
qiaolongfei 已提交
786 787


T
tangwei12 已提交
788
class TestDistLookupTableSliceSize(TestDistLookupTableBase):
T
tangwei12 已提交
789 790 791 792 793
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
T
tangwei12 已提交
794
        pserver1, _ = self.get_pserver(self.pserver1_ep, config)
T
tangwei12 已提交
795 796 797 798 799 800 801

        self.assertTrue(self.transpiler.has_distributed_lookup_table)
        lookup_table_var = pserver1.global_block().vars[
            self.transpiler.table_name]
        row_size = lookup_table_var.shape[0]
        calc_row_size = int(math.ceil(self.table_size / self.pservers))
        self.assertEqual(row_size, calc_row_size)
T
tangwei12 已提交
802 803


T
tangwei12 已提交
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
class TestDistArgsInProgram(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()

        self.assertTrue(trainer._is_distributed)
        self.assertTrue(trainer._is_chief)
        self.assertEqual(trainer._distributed_lookup_table,
                         self.lookup_table_name)
        self.assertEqual(trainer._endpoints,
                         [self.pserver1_ep, self.pserver2_ep])


W
Wu Yi 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
class TestRMSPropOptimizer(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

        self.assertEqual(len(pserver.blocks), 3)
        # block1~2: optimize pass
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "rmsprop"])
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
        moment_var = startup.global_block().var("momentum_1")
        self.assertEqual(moment_var.shape, (500, 1000))


T
tangwei12 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
class TestLoadSliceVar(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, _ = self.get_pserver(self.pserver1_ep)
        pserver2, _ = self.get_pserver(self.pserver2_ep)

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
        vars_ps1 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
            self.pserver1_ep)
        vars_ps2 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
            self.pserver2_ep)

        self.assertTrue(vars_ps1)
        self.assertTrue(vars_ps2)

        for idx in six.moves.xrange(len(vars_ps1)):
            total_numel = 0
            ps1_numel, ps2_numel = 0, 0

            ps1_var = vars_ps1[idx]

            if not ps1_var.is_slice:
                total_numel = six.moves.reduce(lambda x, y: x * y,
                                               vars_ps1[idx].origin.shape)
                ps1_numel = six.moves.reduce(lambda x, y: x * y,
                                             vars_ps1[idx].slice.shape)
            else:
                ps2_var = None
                for var in vars_ps2:
                    if var.origin.name == ps1_var.origin.name:
                        ps2_var = var
                        break

                total_numel = six.moves.reduce(lambda x, y: x * y,
                                               ps1_var.origin.shape)
                ps1_numel = six.moves.reduce(lambda x, y: x * y,
                                             ps1_var.slice.shape)
                ps2_numel = six.moves.reduce(lambda x, y: x * y,
                                             ps2_var.slice.shape)

            self.assertEqual(total_numel, ps1_numel + ps2_numel)
T
tangwei12 已提交
900 901


W
Wu Yi 已提交
902 903
class TestNCCL2Transpile(TranspilerTest):
    def test_nccl2_transpile(self):
T
tangwei12 已提交
904
        if fluid.core.is_compiled_with_cuda():  # test nccl2 only with cuda
J
JiabinYang 已提交
905 906 907 908 909 910 911
            main = fluid.Program()
            startup = fluid.Program()
            with fluid.program_guard(main, startup):
                self.net_conf()

            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
W
Wu Yi 已提交
912
            config.wait_port = False
J
JiabinYang 已提交
913 914 915 916 917 918 919 920 921
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(
                0,
                trainers="127.0.0.1:6174,127.0.0.1:6175",
                current_endpoint="127.0.0.1:6174",
                startup_program=startup)
            print([op.type for op in startup.global_block().ops])
            self.assertEqual(startup.global_block().ops[-1].type, "gen_nccl_id")
            self.assertIsNotNone(startup.global_block().vars.get("NCCLID"))
922
            gc.collect()
J
JiabinYang 已提交
923 924
        else:
            pass
W
Wu Yi 已提交
925 926


Q
Qiao Longfei 已提交
927 928 929
# test for remote prefetch
class TestRemoteLookupTable(TestDistLookupTableBase):
    def net_conf(self):
930 931
        import os
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
Q
Qiao Longfei 已提交
932
        self.network_with_table(is_sparse=True, is_distributed=False)
Q
Qiao Longfei 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

        self.assertEqual(len(pserver1.blocks), 4)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["sum", "scale", "adam", "scale", "scale"])

        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["sum", "scale", "adam", "scale", "scale"])

        trainer, _ = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
            'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add',
S
sneaxiy 已提交
957 958
            'cross_entropy2', 'mean', 'fill_constant', 'mean_grad',
            'cross_entropy_grad2', 'elementwise_add_grad', 'send', 'mul_grad',
Q
Qiao Longfei 已提交
959 960 961 962
            'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'split_selected_rows', 'send', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sum', 'split_selected_rows', 'send', 'send_barrier', 'recv',
Q
Qiao Longfei 已提交
963
            'recv', 'fetch_barrier'
Q
Qiao Longfei 已提交
964 965 966 967
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
# test for remote prefetch
class TestRemoteNce(TestDistLookupTableBase):
    def network_with_table(self, is_sparse, is_distributed):

        num_total_classes = 20
        sampler = "uniform"
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

        input = fluid.layers.data(name="input", shape=[10], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")

        w_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 10],
            dtype='float32',
            name='nce_w',
            initializer=fluid.initializer.ConstantInitializer())
        b_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 1],
            dtype='float32',
            name='nce_b',
            initializer=fluid.initializer.ConstantInitializer())

        cost = fluid.layers.nce(input=input,
                                label=label,
                                num_total_classes=num_total_classes,
                                sampler=sampler,
                                custom_dist=nid_freq_arr.tolist(),
                                sample_weight=None,
                                param_attr='nce_w',
                                bias_attr='nce_b',
                                seed=1,
                                num_neg_samples=5,
                                is_sparse=is_sparse)
        avg_cost = fluid.layers.mean(cost)
        # optimizer
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
T
tangwei12 已提交
1013

1014 1015
        out_vars = ["nce_w"]
        in_vars = ["nce_b"]
T
tangwei12 已提交
1016 1017 1018

        recv_var_names = []

1019 1020
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
T
tangwei12 已提交
1021 1022 1023 1024 1025 1026 1027
                for var in op.output("Out"):
                    recv_var_names.append(var)

        for out_var in out_vars:
            self.assertFalse(out_var in recv_var_names)
        for in_var in in_vars:
            self.assertTrue(in_var in recv_var_names)
1028 1029


J
JiabinYang 已提交
1030 1031 1032 1033
# test for remote prefetch
class TestRemoteHsigmoid(TestDistLookupTableBase):
    def network_with_table(self, is_sparse, is_distributed):

1034
        num_total_classes = 3
J
JiabinYang 已提交
1035

1036
        input = fluid.layers.data(name="input", shape=[1], dtype="float32")
J
JiabinYang 已提交
1037 1038
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        path_table = fluid.layers.data(
1039
            name='path_table', shape=[3], dtype='int64')
J
JiabinYang 已提交
1040
        path_code = fluid.layers.data(
1041
            name='path_code', shape=[3], dtype='int64')
J
JiabinYang 已提交
1042 1043 1044 1045 1046 1047
        w_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 10],
            dtype='float32',
            name='hs_w',
            initializer=fluid.initializer.ConstantInitializer())
        b_param = fluid.default_main_program().global_block().create_parameter(
1048
            shape=[3, 1],
J
JiabinYang 已提交
1049 1050 1051 1052
            dtype='float32',
            name='hs_b',
            initializer=fluid.initializer.ConstantInitializer())

1053
        emb = fluid.layers.embedding(
J
JiabinYang 已提交
1054
            input=input,
1055 1056 1057 1058 1059 1060 1061
            is_sparse=is_sparse,
            size=[3, 3],
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                scale=1 / math.sqrt(num_total_classes))))

        cost = fluid.layers.hsigmoid(
            input=emb,
J
JiabinYang 已提交
1062
            label=label,
1063
            num_classes=num_total_classes,
J
JiabinYang 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
            path_table=path_table,
            path_code=path_code,
            is_custom=True,
            is_sparse=is_sparse)
        avg_cost = fluid.layers.mean(cost)
        # optimizer
        optimizer = fluid.optimizer.SGD(learning_rate=0.003)
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
1080
        params_to_check = list()
J
JiabinYang 已提交
1081
        for op in trainer.blocks[0].ops:
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
            if op.type == "hierarchical_sigmoid":
                params_to_check = [op.input("W")[0], op.input("Bias")[0]]
                for name in ["epmap", "table_names", "epmap"]:
                    assert op.has_attr(name)
                    if name == "epmap":
                        assert op.attr(name)[0] == u'127.0.0.1:6174'
                    elif name == "table_names":
                        assert op.attr(name)[0] == u'hierarchical_sigmoid_0.w_0'
                    else:
                        assert op.attr(name) == 3
            elif op.type == "lookup_table":
                params_to_check.append(op.input("W")[0])
            else:
J
JiabinYang 已提交
1095
                pass
1096 1097 1098 1099 1100 1101 1102
        op_count = 0
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
                assert len(op.output("Out")) == 1
                assert op.output("Out")[0] == u'hierarchical_sigmoid_0.b_0'
                op_count += 1
        assert op_count == 1
J
JiabinYang 已提交
1103 1104


Y
Yancey 已提交
1105 1106
if __name__ == "__main__":
    unittest.main()