test_dist_transpiler.py 41.6 KB
Newer Older
Y
Yancey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import traceback
T
tangwei12 已提交
18
import math
19
import collections
T
tangwei12 已提交
20

21
import six
22
import unittest
23 24
import numpy as np

25
import paddle.fluid as fluid
26

Y
Yancey 已提交
27

W
Wu Yi 已提交
28
class TranspilerTest(unittest.TestCase):
Y
Yancey 已提交
29
    def setUp(self):
W
Wu Yi 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        self.trainer_id = 0
        self.trainers = 2
        self.pservers = 2
        # NOTE: we do not actually bind this port
        self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
        self.pserver1_ep = "127.0.0.1:6174"
        self.pserver2_ep = "127.0.0.1:6175"
        self.sync_mode = True
        self.transpiler = None

    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)

    def get_main_program(self):
        main = fluid.Program()
55
        main.random_seed = 1
W
Wu Yi 已提交
56 57 58 59 60
        with fluid.program_guard(main):
            self.net_conf()
        self.origin_prog = main.clone()
        return main

G
gongweibao 已提交
61 62 63 64 65
    def get_trainer(self, config=None):
        src = fluid.default_startup_program().clone()

        t = self._transpiler_instance(config)

W
Wu Yi 已提交
66
        trainer_main = t.get_trainer_program(wait_port=False)
G
gongweibao 已提交
67 68 69 70 71 72
        trainer_startup = fluid.default_startup_program()

        assert (src.num_blocks == 1)
        assert (trainer_startup.num_blocks == src.num_blocks)

        return trainer_main, trainer_startup
W
Wu Yi 已提交
73

Q
qiaolongfei 已提交
74 75
    def get_pserver(self, ep, config=None, sync_mode=True):
        t = self._transpiler_instance(config, sync_mode)
W
Wu Yi 已提交
76 77 78 79
        pserver = t.get_pserver_program(ep)
        startup = t.get_startup_program(ep, pserver)
        return pserver, startup

Q
qiaolongfei 已提交
80
    def _transpiler_instance(self, config=None, sync_mode=True):
W
Wu Yi 已提交
81 82
        if not self.transpiler:
            main = self.get_main_program()
G
gongweibao 已提交
83
            self.transpiler = fluid.DistributeTranspiler(config=config)
W
Wu Yi 已提交
84 85 86 87
            self.transpiler.transpile(
                self.trainer_id,
                program=main,
                pservers=self.pserver_eps,
Q
qiaolongfei 已提交
88 89
                trainers=self.trainers,
                sync_mode=sync_mode)
G
gongweibao 已提交
90

W
Wu Yi 已提交
91
        return self.transpiler
Y
Yancey 已提交
92

Q
qiaolongfei 已提交
93 94
    def transpiler_test_impl(self):
        pass
W
Wu Yi 已提交
95

Y
Yancey 已提交
96
    def test_transpiler(self):
Q
qiaolongfei 已提交
97 98
        main = fluid.Program()
        startup = fluid.Program()
T
tangwei12 已提交
99 100 101
        with fluid.unique_name.guard():
            with fluid.program_guard(main, startup):
                self.transpiler_test_impl()
Q
qiaolongfei 已提交
102 103 104 105


class TestBasicModel(TranspilerTest):
    def transpiler_test_impl(self):
W
Wu Yi 已提交
106 107 108
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

G
gongweibao 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        trainer, trainer_startup = self.get_trainer()

        # splited var blocks should be in startup program
        self.assertTrue("fc_w.block0" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w.block1" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w" in trainer_startup.global_block().vars)
        self.assertTrue("fc_b" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w@GRAD" not in trainer_startup.global_block().vars)
        self.assertTrue("fc_b@GRAD" not in trainer_startup.global_block().vars)

        src = [op.type for op in trainer_startup.global_block().ops]
        dst = ['fill_constant', 'fill_constant', 'uniform_random', 'recv', 'recv', \
               'fetch_barrier', 'concat']

        self.assertEqual(src, dst)
W
Wu Yi 已提交
124 125 126 127 128 129 130

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'split_byref', 'send',
            'send_barrier', 'recv', 'recv', 'fetch_barrier', 'concat'
        ])
Y
Yancey 已提交
131 132 133 134 135

        self.assertEqual(len(pserver.blocks), 3)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
W
Wu Yi 已提交
136
        # block1~2: optimize pass
Y
Yancey 已提交
137 138 139
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
W
Wu Yi 已提交
140 141
        self.assertEqual([op.type for op in startup.global_block().ops],
                         ["fill_constant", "fill_constant", "uniform_random"])
Y
Yancey1989 已提交
142
        # the variable #fc_w will be split into two blocks
Y
Yancey 已提交
143 144
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
W
Wu Yi 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


G
gongweibao 已提交
166
class TestBasicModelWithLargeBlockSize(TranspilerTest):
Q
qiaolongfei 已提交
167
    def transpiler_test_impl(self):
G
gongweibao 已提交
168 169 170 171 172 173
        config = fluid.DistributeTranspilerConfig()
        config.min_block_size = 1048576

        pserver, startup = self.get_pserver(self.pserver1_ep, config)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep, config)

G
gongweibao 已提交
174
        trainer, _ = self.get_trainer(config)
G
gongweibao 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'send_barrier',
            'recv', 'recv', 'fetch_barrier'
        ])

        self.assertEqual(len(pserver.blocks), 2)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
        # block1~2: optimize pass
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
        self.assertEqual([op.type for op in startup.global_block().ops],
Q
qiaolongfei 已提交
192
                         ["fill_constant", "fill_constant"])
G
gongweibao 已提交
193 194
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup2.global_block().var("fc_w")
195
        self.assertEqual(fc_w_var.shape, (1000, 1000))
G
gongweibao 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


W
Wu Yi 已提交
217 218 219 220
class TestNoSliceVar(TranspilerTest):
    def setUp(self):
        super(TestNoSliceVar, self).setUp()

Q
qiaolongfei 已提交
221
    def transpiler_test_impl(self):
G
gongweibao 已提交
222 223 224 225 226
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        _, startup = self.get_pserver(self.pserver1_ep, config)
        _, startup2 = self.get_pserver(self.pserver2_ep, config)
W
Wu Yi 已提交
227

228
        if "fc_w" in startup.global_block().vars:
W
Wu Yi 已提交
229
            fc_w_var = startup.global_block().vars["fc_w"]
230
        elif "fc_w" in startup2.global_block().vars:
W
Wu Yi 已提交
231 232 233
            fc_w_var = startup2.global_block().vars["fc_w"]

        self.assertEqual(fc_w_var.shape, (1000, 1000))
Y
Yancey 已提交
234 235


W
Wu Yi 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
class TestLRDecay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.exponential_decay(
                learning_rate=1.0,
                decay_steps=2100,
                decay_rate=0.1,
                staircase=True))
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
255
    def transpiler_test_impl(self):
W
Wu Yi 已提交
256
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
257
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
258 259 260 261 262 263 264 265 266 267

        self.assertEqual(len(pserver.blocks), 4)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "elementwise_div", "floor",
            "fill_constant", "elementwise_pow", "fill_constant",
            "elementwise_mul"
        ])


268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
class TestDecayedAdagrad(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        opt = fluid.optimizer.DecayedAdagrad(learning_rate=0.1)
        opt.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer, _ = self.get_trainer()


287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
class TestFtrl(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        opt = fluid.optimizer.Ftrl(learning_rate=0.1)
        opt.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer, _ = self.get_trainer()


W
Wu Yi 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
class TestLRDecayConditional(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.piecewise_decay([10000, 20000],
                                                       [1.0, 0.5, 1.0]))
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
322
    def transpiler_test_impl(self):
W
Wu Yi 已提交
323
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
324
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
325 326 327 328

        serv_op = pserver.blocks[0].ops[0]
        sub_blocks = []
        optimize_blocks = []
G
gongweibao 已提交
329
        for b in serv_op.all_attrs()["optimize_blocks"]:
W
Wu Yi 已提交
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
            optimize_blocks.append(b.idx)
        for b in pserver.blocks:
            if b.idx not in optimize_blocks:
                sub_blocks.append(b.idx)

        self.assertEqual(len(pserver.blocks), 7)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
        # test the condition blocks
        for b in sub_blocks:
            if b == 0:
                continue
            block = pserver.blocks[b]
            self.assertEqual([op.type for op in block.ops], ["assign"])


class TestL2Decay(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
            param_attr=fluid.ParamAttr(
                name='fc_w',
                regularizer=fluid.regularizer.L2Decay(),
                gradient_clip=fluid.clip.GradientClipByValue(0.1)),
            bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
370
    def transpiler_test_impl(self):
W
Wu Yi 已提交
371
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
372
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
373 374 375 376

        self.assertEqual(len(pserver.blocks), 3)
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "clip", "sgd"])
C
chengduo 已提交
377 378
        self.assertEqual([op.type for op in pserver.blocks[2].ops],
                         ["sum", "scale", "clip", "scale", "sum", "sgd"])
W
Wu Yi 已提交
379 380
        # TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer

Y
Yancey 已提交
381

T
typhoonzero 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
class TestL2DecayWithPiecewise(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        base_lr = 1.0
        bd = [1, 10, 20, 30]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
        sgd_optimizer = fluid.optimizer.Momentum(
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
403
    def transpiler_test_impl(self):
T
typhoonzero 已提交
404
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
405
        trainer, _ = self.get_trainer()
T
typhoonzero 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418

        self.assertEqual(len(pserver.blocks), 9)
        self.assertEqual([op.type for op in pserver.blocks[1].ops], [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
C
chengduo 已提交
419 420 421 422
        self.assertEqual([op.type for op in pserver.blocks[7].ops],
                         ["sum", "scale", "scale", "sum", "momentum"])
        self.assertEqual([op.type for op in pserver.blocks[8].ops],
                         ["sum", "scale", "scale", "sum", "momentum"])
Y
Yancey 已提交
423 424


Q
Qiao Longfei 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
class TestEmptyPserverOptimizeBlocks(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        # only one parameter
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=False)
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=1.0)
        sgd_optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        pserver, startup = self.get_pserver(ep=self.pserver2_ep, config=config)

        self.assertEqual(len(pserver.blocks), 2)
        self.assertEqual(len(pserver.blocks[1].ops), 0)


450
class TestDistLookupTableBase(TranspilerTest):
Q
Qiao Longfei 已提交
451
    def network_with_table(self, is_sparse, is_distributed):
T
tangwei12 已提交
452 453
        self.table_size = 1000
        self.emb_size = 64
T
tangwei12 已提交
454
        self.lookup_table_name = 'shared_w'
T
tangwei12 已提交
455

Q
Qiao Longfei 已提交
456
        def emb_pool(ids, table_name, is_distributed):
457 458
            emb = fluid.layers.embedding(
                input=ids,
T
tangwei12 已提交
459
                size=[self.table_size, self.emb_size],
460
                dtype='float32',
461
                param_attr=table_name,
462
                is_sparse=is_sparse,
Q
Qiao Longfei 已提交
463
                is_distributed=is_distributed)
464 465 466 467 468 469 470
            pool = fluid.layers.sequence_pool(input=emb, pool_type='average')
            return pool

        title_ids = fluid.layers.data(
            name='title_ids', shape=[1], dtype='int64', lod_level=1)
        brand_ids = fluid.layers.data(
            name='brand_ids', shape=[1], dtype='int64', lod_level=1)
471 472
        profile_ids = fluid.layers.data(
            name='brand_ids', shape=[1], dtype='int64', lod_level=1)
Q
Qiao Longfei 已提交
473 474 475
        title_emb = emb_pool(title_ids, self.lookup_table_name, is_distributed)
        brand_emb = emb_pool(brand_ids, self.lookup_table_name, is_distributed)
        profile_emb = emb_pool(profile_ids, "profile_emb", False)
Q
Qiao Longfei 已提交
476 477
        fc0 = fluid.layers.concat(
            input=[title_emb, brand_emb, profile_emb], axis=1)
478 479 480 481 482 483 484 485 486 487 488 489 490
        predict = fluid.layers.fc(input=fc0,
                                  size=2,
                                  act=None,
                                  param_attr=fluid.ParamAttr(name='fc_w'),
                                  bias_attr=fluid.ParamAttr(name='fc_b'))

        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)


Q
qiaolongfei 已提交
491 492 493 494 495 496 497
class TestLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

498
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
499 500 501 502 503 504 505
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
Q
qiaolongfei 已提交
506
                         ["sum", "scale", "adam", "scale", "scale"])
Q
qiaolongfei 已提交
507

508 509 510 511 512
        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["sum", "scale", "adam", "scale", "scale"])

G
gongweibao 已提交
513
        trainer, _ = self.get_trainer()
Q
qiaolongfei 已提交
514 515 516
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
Q
Qiao Longfei 已提交
517 518 519 520 521 522 523
            'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add',
            'cross_entropy', 'mean', 'fill_constant', 'mean_grad',
            'cross_entropy_grad', 'elementwise_add_grad', 'send', 'mul_grad',
            'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'split_selected_rows', 'send', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sum', 'split_selected_rows', 'send', 'send_barrier', 'recv',
J
JiabinYang 已提交
524
            'recv', 'fetch_barrier'
Q
qiaolongfei 已提交
525 526 527 528
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


529 530 531 532 533 534 535
class TestDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

536
        self.assertEqual(len(pserver1.blocks), 6)
537 538 539 540
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
541
        # 4 prefetch -> lookup_sparse_table for data0
542
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
543
                         ["sum", "scale", "adam", "scale", "scale"])
Q
Qiao Longfei 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        # 2 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["sum", "sgd"])
        # 3 prefetch -> lookup_sparse_table for data0
        self.assertEqual([op.type for op in pserver1.blocks[4].ops],
                         ["lookup_sparse_table"])
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])

        trainer, trainer_startup = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool',
            'sequence_pool', 'lookup_table', 'sequence_pool', 'concat', 'mul',
            'elementwise_add', 'cross_entropy', 'mean', 'fill_constant',
            'mean_grad', 'cross_entropy_grad', 'elementwise_add_grad', 'send',
            'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'split_selected_rows', 'send',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sum', 'split_ids', 'send', 'send_barrier',
564
            'recv', 'recv', 'fetch_barrier'
Q
Qiao Longfei 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
        startup_ops = [
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'uniform_random',
            'uniform_random', 'recv', 'recv', 'recv', 'fetch_barrier', 'concat',
            'fake_init'
        ]
        self.assertEqual([op.type for op in trainer_startup.blocks[0].ops],
                         startup_ops)


Q
qiaolongfei 已提交
579 580 581 582 583 584
class TestAsyncLocalLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
Q
qiaolongfei 已提交
585
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
586

587
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
588 589 590 591 592 593 594 595
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["adam", "scale", "scale"])
596 597 598 599
        # 3 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["adam", "scale", "scale"])
Q
qiaolongfei 已提交
600

G
gongweibao 已提交
601
        trainer, _ = self.get_trainer(config)
Q
qiaolongfei 已提交
602 603 604
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
605 606
            'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add',
            'cross_entropy', 'mean', 'fill_constant', 'mean_grad',
Q
Qiao Longfei 已提交
607 608 609 610
            'cross_entropy_grad', 'elementwise_add_grad', 'send', 'mul_grad',
            'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'split_selected_rows', 'send', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
J
JiabinYang 已提交
611
            'sum', 'split_selected_rows', 'send', 'recv', 'recv'
Q
qiaolongfei 已提交
612 613 614 615
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Q
qiaolongfei 已提交
616 617 618 619 620 621 622
class TestAsyncDistLookupTable(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()

Q
qiaolongfei 已提交
623
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
624

625
        self.assertEqual(len(pserver1.blocks), 6)
Q
qiaolongfei 已提交
626 627 628 629
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
630 631 632 633 634 635 636
        # 2 optimize for table adam
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["adam", "scale", "scale"])
        # 3 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[3].ops], ["sgd"])
        # 4 prefetch -> lookup_sparse_table for data0
        self.assertEqual([op.type for op in pserver1.blocks[4].ops],
Q
qiaolongfei 已提交
637
                         ["lookup_sparse_table"])
638 639
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])
Q
qiaolongfei 已提交
640

Q
Qiao Longfei 已提交
641
        trainer, trainer_startup = self.get_trainer(config)
Q
qiaolongfei 已提交
642 643
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
S
seiriosPlus 已提交
644
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool',
Q
Qiao Longfei 已提交
645 646 647 648 649 650
            'sequence_pool', 'lookup_table', 'sequence_pool', 'concat', 'mul',
            'elementwise_add', 'cross_entropy', 'mean', 'fill_constant',
            'mean_grad', 'cross_entropy_grad', 'elementwise_add_grad', 'send',
            'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'split_selected_rows', 'send',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
651
            'lookup_table_grad', 'sum', 'split_ids', 'send', 'recv', 'recv'
Q
Qiao Longfei 已提交
652
        ]
Q
qiaolongfei 已提交
653
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
Q
Qiao Longfei 已提交
654 655 656 657 658 659 660 661 662 663
        startup_ops = [
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'uniform_random',
            'uniform_random', 'recv', 'recv', 'recv', 'fetch_barrier', 'concat',
            'fake_init'
        ]
        self.assertEqual([op.type for op in trainer_startup.blocks[0].ops],
                         startup_ops)
Q
qiaolongfei 已提交
664 665


T
tangwei12 已提交
666
class TestDistLookupTableSliceSize(TestDistLookupTableBase):
T
tangwei12 已提交
667 668 669 670 671
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
T
tangwei12 已提交
672
        pserver1, _ = self.get_pserver(self.pserver1_ep, config)
T
tangwei12 已提交
673 674 675 676 677 678 679

        self.assertTrue(self.transpiler.has_distributed_lookup_table)
        lookup_table_var = pserver1.global_block().vars[
            self.transpiler.table_name]
        row_size = lookup_table_var.shape[0]
        calc_row_size = int(math.ceil(self.table_size / self.pservers))
        self.assertEqual(row_size, calc_row_size)
T
tangwei12 已提交
680 681


T
tangwei12 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
class TestDistArgsInProgram(TestDistLookupTableBase):
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()

        self.assertTrue(trainer._is_distributed)
        self.assertTrue(trainer._is_chief)
        self.assertEqual(trainer._distributed_lookup_table,
                         self.lookup_table_name)
        self.assertEqual(trainer._endpoints,
                         [self.pserver1_ep, self.pserver2_ep])


W
Wu Yi 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
class TestRMSPropOptimizer(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

        self.assertEqual(len(pserver.blocks), 3)
        # block1~2: optimize pass
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "rmsprop"])
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
        moment_var = startup.global_block().var("momentum_1")
        self.assertEqual(moment_var.shape, (500, 1000))


T
tangwei12 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
class TestLoadSliceVar(TranspilerTest):
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, _ = self.get_pserver(self.pserver1_ep)
        pserver2, _ = self.get_pserver(self.pserver2_ep)

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
        vars_ps1 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
            self.pserver1_ep)
        vars_ps2 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
            self.pserver2_ep)

        self.assertTrue(vars_ps1)
        self.assertTrue(vars_ps2)

        for idx in six.moves.xrange(len(vars_ps1)):
            total_numel = 0
            ps1_numel, ps2_numel = 0, 0

            ps1_var = vars_ps1[idx]

            if not ps1_var.is_slice:
                total_numel = six.moves.reduce(lambda x, y: x * y,
                                               vars_ps1[idx].origin.shape)
                ps1_numel = six.moves.reduce(lambda x, y: x * y,
                                             vars_ps1[idx].slice.shape)
            else:
                ps2_var = None
                for var in vars_ps2:
                    if var.origin.name == ps1_var.origin.name:
                        ps2_var = var
                        break

                total_numel = six.moves.reduce(lambda x, y: x * y,
                                               ps1_var.origin.shape)
                ps1_numel = six.moves.reduce(lambda x, y: x * y,
                                             ps1_var.slice.shape)
                ps2_numel = six.moves.reduce(lambda x, y: x * y,
                                             ps2_var.slice.shape)

            self.assertEqual(total_numel, ps1_numel + ps2_numel)
T
tangwei12 已提交
778 779


W
Wu Yi 已提交
780 781
class TestNCCL2Transpile(TranspilerTest):
    def test_nccl2_transpile(self):
J
JiabinYang 已提交
782 783 784 785 786 787 788 789
        if fluid.core.is_compiled_with_cuda():  #test nccl2 only with cuda
            main = fluid.Program()
            startup = fluid.Program()
            with fluid.program_guard(main, startup):
                self.net_conf()

            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
W
Wu Yi 已提交
790
            config.wait_port = False
J
JiabinYang 已提交
791 792 793 794 795 796 797 798 799 800 801
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(
                0,
                trainers="127.0.0.1:6174,127.0.0.1:6175",
                current_endpoint="127.0.0.1:6174",
                startup_program=startup)
            print([op.type for op in startup.global_block().ops])
            self.assertEqual(startup.global_block().ops[-1].type, "gen_nccl_id")
            self.assertIsNotNone(startup.global_block().vars.get("NCCLID"))
        else:
            pass
W
Wu Yi 已提交
802 803


Q
Qiao Longfei 已提交
804 805 806
# test for remote prefetch
class TestRemoteLookupTable(TestDistLookupTableBase):
    def net_conf(self):
807 808
        import os
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
Q
Qiao Longfei 已提交
809
        self.network_with_table(is_sparse=True, is_distributed=False)
Q
Qiao Longfei 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

        self.assertEqual(len(pserver1.blocks), 4)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["sum", "scale", "adam", "scale", "scale"])

        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["sum", "scale", "adam", "scale", "scale"])

        trainer, _ = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
            'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add',
            'cross_entropy', 'mean', 'fill_constant', 'mean_grad',
            'cross_entropy_grad', 'elementwise_add_grad', 'send', 'mul_grad',
            'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'split_selected_rows', 'send', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sum', 'split_selected_rows', 'send', 'send_barrier', 'recv',
Q
Qiao Longfei 已提交
840
            'recv', 'fetch_barrier'
Q
Qiao Longfei 已提交
841 842 843 844
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
# test for remote prefetch
class TestRemoteNce(TestDistLookupTableBase):
    def network_with_table(self, is_sparse, is_distributed):

        num_total_classes = 20
        sampler = "uniform"
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

        input = fluid.layers.data(name="input", shape=[10], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")

        w_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 10],
            dtype='float32',
            name='nce_w',
            initializer=fluid.initializer.ConstantInitializer())
        b_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 1],
            dtype='float32',
            name='nce_b',
            initializer=fluid.initializer.ConstantInitializer())

        cost = fluid.layers.nce(input=input,
                                label=label,
                                num_total_classes=num_total_classes,
                                sampler=sampler,
                                custom_dist=nid_freq_arr.tolist(),
                                sample_weight=None,
                                param_attr='nce_w',
                                bias_attr='nce_b',
                                seed=1,
                                num_neg_samples=5,
                                is_sparse=is_sparse)
        avg_cost = fluid.layers.mean(cost)
        # optimizer
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
T
tangwei12 已提交
890

891 892
        out_vars = ["nce_w"]
        in_vars = ["nce_b"]
T
tangwei12 已提交
893 894 895

        recv_var_names = []

896 897
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
T
tangwei12 已提交
898 899 900 901 902 903 904
                for var in op.output("Out"):
                    recv_var_names.append(var)

        for out_var in out_vars:
            self.assertFalse(out_var in recv_var_names)
        for in_var in in_vars:
            self.assertTrue(in_var in recv_var_names)
905 906


J
JiabinYang 已提交
907 908 909 910
# test for remote prefetch
class TestRemoteHsigmoid(TestDistLookupTableBase):
    def network_with_table(self, is_sparse, is_distributed):

911
        num_total_classes = 3
J
JiabinYang 已提交
912

913
        input = fluid.layers.data(name="input", shape=[1], dtype="float32")
J
JiabinYang 已提交
914 915
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        path_table = fluid.layers.data(
916
            name='path_table', shape=[3], dtype='int64')
J
JiabinYang 已提交
917
        path_code = fluid.layers.data(
918
            name='path_code', shape=[3], dtype='int64')
J
JiabinYang 已提交
919 920 921 922 923 924
        w_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 10],
            dtype='float32',
            name='hs_w',
            initializer=fluid.initializer.ConstantInitializer())
        b_param = fluid.default_main_program().global_block().create_parameter(
925
            shape=[3, 1],
J
JiabinYang 已提交
926 927 928 929
            dtype='float32',
            name='hs_b',
            initializer=fluid.initializer.ConstantInitializer())

930
        emb = fluid.layers.embedding(
J
JiabinYang 已提交
931
            input=input,
932 933 934 935 936 937 938
            is_sparse=is_sparse,
            size=[3, 3],
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                scale=1 / math.sqrt(num_total_classes))))

        cost = fluid.layers.hsigmoid(
            input=emb,
J
JiabinYang 已提交
939
            label=label,
940
            num_classes=num_total_classes,
J
JiabinYang 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
            path_table=path_table,
            path_code=path_code,
            is_custom=True,
            is_sparse=is_sparse)
        avg_cost = fluid.layers.mean(cost)
        # optimizer
        optimizer = fluid.optimizer.SGD(learning_rate=0.003)
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
957
        params_to_check = list()
J
JiabinYang 已提交
958
        for op in trainer.blocks[0].ops:
959 960 961 962 963 964 965 966 967 968 969 970 971
            if op.type == "hierarchical_sigmoid":
                params_to_check = [op.input("W")[0], op.input("Bias")[0]]
                for name in ["epmap", "table_names", "epmap"]:
                    assert op.has_attr(name)
                    if name == "epmap":
                        assert op.attr(name)[0] == u'127.0.0.1:6174'
                    elif name == "table_names":
                        assert op.attr(name)[0] == u'hierarchical_sigmoid_0.w_0'
                    else:
                        assert op.attr(name) == 3
            elif op.type == "lookup_table":
                params_to_check.append(op.input("W")[0])
            else:
J
JiabinYang 已提交
972
                pass
973 974 975 976 977 978 979
        op_count = 0
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
                assert len(op.output("Out")) == 1
                assert op.output("Out")[0] == u'hierarchical_sigmoid_0.b_0'
                op_count += 1
        assert op_count == 1
J
JiabinYang 已提交
980 981


Y
Yancey 已提交
982 983
if __name__ == "__main__":
    unittest.main()