test_dist_transpiler.py 48.0 KB
Newer Older
Y
Yancey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import traceback
T
tangwei12 已提交
18
import math
19
import collections
T
tangwei12 已提交
20

21
import six
22
import unittest
23 24
import numpy as np

25
import gc
T
tangwei12 已提交
26

27 28
gc.set_debug(gc.DEBUG_COLLECTABLE)

29
import paddle.fluid as fluid
30

Y
Yancey 已提交
31

W
Wu Yi 已提交
32
class TranspilerTest(unittest.TestCase):
33

Y
Yancey 已提交
34
    def setUp(self):
W
Wu Yi 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
        self.trainer_id = 0
        self.trainers = 2
        self.pservers = 2
        # NOTE: we do not actually bind this port
        self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
        self.pserver1_ep = "127.0.0.1:6174"
        self.pserver2_ep = "127.0.0.1:6175"
        self.sync_mode = True
        self.transpiler = None

    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
        sgd_optimizer.minimize(avg_cost)

    def get_main_program(self):
        main = fluid.Program()
60
        main.random_seed = 1
W
Wu Yi 已提交
61 62 63 64 65
        with fluid.program_guard(main):
            self.net_conf()
        self.origin_prog = main.clone()
        return main

1
123malin 已提交
66
    def get_trainer(self, config=None, sync_mode=True):
G
gongweibao 已提交
67 68
        src = fluid.default_startup_program().clone()

1
123malin 已提交
69
        t = self._transpiler_instance(config, sync_mode=True)
G
gongweibao 已提交
70

W
Wu Yi 已提交
71
        trainer_main = t.get_trainer_program(wait_port=False)
G
gongweibao 已提交
72 73 74 75 76 77
        trainer_startup = fluid.default_startup_program()

        assert (src.num_blocks == 1)
        assert (trainer_startup.num_blocks == src.num_blocks)

        return trainer_main, trainer_startup
W
Wu Yi 已提交
78

Q
qiaolongfei 已提交
79 80
    def get_pserver(self, ep, config=None, sync_mode=True):
        t = self._transpiler_instance(config, sync_mode)
W
Wu Yi 已提交
81 82 83 84
        pserver = t.get_pserver_program(ep)
        startup = t.get_startup_program(ep, pserver)
        return pserver, startup

Q
qiaolongfei 已提交
85
    def _transpiler_instance(self, config=None, sync_mode=True):
W
Wu Yi 已提交
86 87
        if not self.transpiler:
            main = self.get_main_program()
G
gongweibao 已提交
88
            self.transpiler = fluid.DistributeTranspiler(config=config)
89 90 91 92 93
            self.transpiler.transpile(self.trainer_id,
                                      program=main,
                                      pservers=self.pserver_eps,
                                      trainers=self.trainers,
                                      sync_mode=sync_mode)
G
gongweibao 已提交
94

W
Wu Yi 已提交
95
        return self.transpiler
Y
Yancey 已提交
96

Q
qiaolongfei 已提交
97 98
    def transpiler_test_impl(self):
        pass
W
Wu Yi 已提交
99

Y
Yancey 已提交
100
    def test_transpiler(self):
Q
qiaolongfei 已提交
101 102
        main = fluid.Program()
        startup = fluid.Program()
T
tangwei12 已提交
103 104 105
        with fluid.unique_name.guard():
            with fluid.program_guard(main, startup):
                self.transpiler_test_impl()
106 107 108 109 110 111
        # NOTE: run gc.collect to eliminate pybind side objects to
        # prevent random double-deallocate when inherited in python.
        del self.transpiler
        del main
        del startup
        gc.collect()
Q
qiaolongfei 已提交
112 113 114


class TestBasicModel(TranspilerTest):
115

Q
qiaolongfei 已提交
116
    def transpiler_test_impl(self):
W
Wu Yi 已提交
117 118 119
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

G
gongweibao 已提交
120 121
        trainer, trainer_startup = self.get_trainer()

T
tianshuo78520a 已提交
122
        # split var blocks should be in startup program
G
gongweibao 已提交
123 124 125 126 127 128 129 130 131 132 133 134
        self.assertTrue("fc_w.block0" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w.block1" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w" in trainer_startup.global_block().vars)
        self.assertTrue("fc_b" in trainer_startup.global_block().vars)
        self.assertTrue("fc_w@GRAD" not in trainer_startup.global_block().vars)
        self.assertTrue("fc_b@GRAD" not in trainer_startup.global_block().vars)

        src = [op.type for op in trainer_startup.global_block().ops]
        dst = ['fill_constant', 'fill_constant', 'uniform_random', 'recv', 'recv', \
               'fetch_barrier', 'concat']

        self.assertEqual(src, dst)
W
Wu Yi 已提交
135 136 137 138 139 140 141

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'split_byref', 'send',
            'send_barrier', 'recv', 'recv', 'fetch_barrier', 'concat'
        ])
Y
Yancey 已提交
142 143 144 145 146

        self.assertEqual(len(pserver.blocks), 3)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
W
Wu Yi 已提交
147
        # block1~2: optimize pass
Y
Yancey 已提交
148 149 150
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
W
Wu Yi 已提交
151 152
        self.assertEqual([op.type for op in startup.global_block().ops],
                         ["fill_constant", "fill_constant", "uniform_random"])
Y
Yancey1989 已提交
153
        # the variable #fc_w will be split into two blocks
Y
Yancey 已提交
154 155
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
W
Wu Yi 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


G
gongweibao 已提交
177
class TestBasicModelWithLargeBlockSize(TranspilerTest):
178

Q
qiaolongfei 已提交
179
    def transpiler_test_impl(self):
G
gongweibao 已提交
180 181 182 183 184 185
        config = fluid.DistributeTranspilerConfig()
        config.min_block_size = 1048576

        pserver, startup = self.get_pserver(self.pserver1_ep, config)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep, config)

G
gongweibao 已提交
186
        trainer, _ = self.get_trainer(config)
G
gongweibao 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

        self.assertEqual([op.type for op in trainer.global_block().ops], [
            'mul', 'elementwise_add', 'elementwise_sub', 'square', 'mean',
            'fill_constant', 'mean_grad', 'square_grad', 'elementwise_sub_grad',
            'elementwise_add_grad', 'send', 'mul_grad', 'send', 'send_barrier',
            'recv', 'recv', 'fetch_barrier'
        ])

        self.assertEqual(len(pserver.blocks), 2)
        # block0: listen_and_serv
        self.assertEqual([op.type for op in pserver.blocks[0].ops],
                         ["listen_and_serv"])
        # block1~2: optimize pass
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "sgd"])
        # confirm startup program
        self.assertEqual([op.type for op in startup.global_block().ops],
Q
qiaolongfei 已提交
204
                         ["fill_constant", "fill_constant"])
G
gongweibao 已提交
205 206
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup2.global_block().var("fc_w")
207
        self.assertEqual(fc_w_var.shape, (1000, 1000))
G
gongweibao 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        # all parameters should be optimized on pserver

        pserver_params = []
        for prog in [pserver, pserver2]:
            for blk in prog.blocks:
                for op in blk.ops:
                    if "Param" in op.input_names:
                        param_name = op.input("Param")[0]
                        is_block_idx = param_name.find(".block")
                        if is_block_idx != -1:
                            origin_param_name = param_name[:is_block_idx]
                        else:
                            origin_param_name = param_name
                        pserver_params.append(origin_param_name)
        trainer_params = []
        for op in self.origin_prog.global_block().ops:
            if "Param" in op.input_names:
                trainer_params.append(op.input("Param")[0])
        self.assertEqual(set(pserver_params), set(trainer_params))


W
Wu Yi 已提交
229
class TestNoSliceVar(TranspilerTest):
230

W
Wu Yi 已提交
231 232 233
    def setUp(self):
        super(TestNoSliceVar, self).setUp()

Q
qiaolongfei 已提交
234
    def transpiler_test_impl(self):
G
gongweibao 已提交
235 236 237 238 239
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        _, startup = self.get_pserver(self.pserver1_ep, config)
        _, startup2 = self.get_pserver(self.pserver2_ep, config)
W
Wu Yi 已提交
240

241
        if "fc_w" in startup.global_block().vars:
W
Wu Yi 已提交
242
            fc_w_var = startup.global_block().vars["fc_w"]
243
        elif "fc_w" in startup2.global_block().vars:
W
Wu Yi 已提交
244 245 246
            fc_w_var = startup2.global_block().vars["fc_w"]

        self.assertEqual(fc_w_var.shape, (1000, 1000))
Y
Yancey 已提交
247 248


W
Wu Yi 已提交
249
class TestLRDecay(TranspilerTest):
250

W
Wu Yi 已提交
251 252 253 254 255 256 257 258 259 260 261
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
262 263 264 265
            learning_rate=fluid.layers.exponential_decay(learning_rate=1.0,
                                                         decay_steps=2100,
                                                         decay_rate=0.1,
                                                         staircase=True))
W
Wu Yi 已提交
266 267
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
268
    def transpiler_test_impl(self):
W
Wu Yi 已提交
269
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
270
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
271 272 273 274 275 276 277 278 279 280

        self.assertEqual(len(pserver.blocks), 4)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "elementwise_div", "floor",
            "fill_constant", "elementwise_pow", "fill_constant",
            "elementwise_mul"
        ])


T
tangwei12 已提交
281
class TestFakeInit(TranspilerTest):
282

T
tangwei12 已提交
283 284 285
    def net_conf(self):
        dict_size, embedding_size, neg_num = 10000, 8, 5

286 287 288 289 290 291 292 293 294 295 296 297
        input_word = fluid.layers.data(name="input_word",
                                       shape=[1],
                                       dtype='int64',
                                       lod_level=1)
        true_word = fluid.layers.data(name='true_label',
                                      shape=[1],
                                      dtype='int64',
                                      lod_level=1)
        neg_word = fluid.layers.data(name="neg_label",
                                     shape=[1],
                                     dtype='int64',
                                     lod_level=1)
T
tangwei12 已提交
298 299 300 301 302 303 304
        inputs = [input_word, true_word, neg_word]

        init_width = 0.5 / embedding_size
        input_emb = fluid.layers.embedding(
            input=inputs[0],
            is_sparse=True,
            size=[dict_size, embedding_size],
305 306 307
            param_attr=fluid.ParamAttr(name='emb',
                                       initializer=fluid.initializer.Uniform(
                                           -init_width, init_width)))
T
tangwei12 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327

        true_emb_w = fluid.layers.embedding(
            input=inputs[1],
            is_sparse=True,
            size=[dict_size, embedding_size],
            param_attr=fluid.ParamAttr(
                name='emb_w',
                initializer=fluid.initializer.Constant(value=0.0)))

        true_emb_b = fluid.layers.embedding(
            input=inputs[1],
            is_sparse=True,
            size=[dict_size, 1],
            param_attr=fluid.ParamAttr(
                name='emb_b',
                initializer=fluid.initializer.Constant(value=0.0)))

        neg_word_reshape = fluid.layers.reshape(inputs[2], shape=[-1, 1])
        neg_word_reshape.stop_gradient = True

328 329 330 331 332
        neg_emb_w = fluid.layers.embedding(input=neg_word_reshape,
                                           is_sparse=True,
                                           size=[dict_size, embedding_size],
                                           param_attr=fluid.ParamAttr(
                                               name='emb_w', learning_rate=1.0))
T
tangwei12 已提交
333

334 335
        neg_emb_w_re = fluid.layers.reshape(neg_emb_w,
                                            shape=[-1, neg_num, embedding_size])
T
tangwei12 已提交
336

337 338 339 340 341
        neg_emb_b = fluid.layers.embedding(input=neg_word_reshape,
                                           is_sparse=True,
                                           size=[dict_size, 1],
                                           param_attr=fluid.ParamAttr(
                                               name='emb_b', learning_rate=1.0))
T
tangwei12 已提交
342 343 344 345

        neg_emb_b_vec = fluid.layers.reshape(neg_emb_b, shape=[-1, neg_num])

        true_logits = fluid.layers.elementwise_add(
346 347 348 349
            fluid.layers.reduce_sum(fluid.layers.elementwise_mul(
                input_emb, true_emb_w),
                                    dim=1,
                                    keep_dim=True), true_emb_b)
T
tangwei12 已提交
350

351 352
        input_emb_re = fluid.layers.reshape(input_emb,
                                            shape=[-1, 1, embedding_size])
T
tangwei12 已提交
353

354 355 356
        neg_matmul = fluid.layers.matmul(input_emb_re,
                                         neg_emb_w_re,
                                         transpose_y=True)
T
tangwei12 已提交
357 358 359
        neg_matmul_re = fluid.layers.reshape(neg_matmul, shape=[-1, neg_num])
        neg_logits = fluid.layers.elementwise_add(neg_matmul_re, neg_emb_b_vec)
        # nce loss
360 361 362 363
        label_ones = fluid.layers.fill_constant_batch_size_like(true_logits,
                                                                shape=[-1, 1],
                                                                value=1.0,
                                                                dtype='float32')
T
tangwei12 已提交
364 365 366
        label_zeros = fluid.layers.fill_constant_batch_size_like(
            true_logits, shape=[-1, neg_num], value=0.0, dtype='float32')

367 368 369 370
        true_xent = fluid.layers.sigmoid_cross_entropy_with_logits(
            true_logits, label_ones)
        neg_xent = fluid.layers.sigmoid_cross_entropy_with_logits(
            neg_logits, label_zeros)
T
tangwei12 已提交
371
        cost = fluid.layers.elementwise_add(
372 373
            fluid.layers.reduce_sum(true_xent, dim=1),
            fluid.layers.reduce_sum(neg_xent, dim=1))
T
tangwei12 已提交
374 375 376
        avg_cost = fluid.layers.reduce_mean(cost)

        sgd_optimizer = fluid.optimizer.SGD(
377 378 379 380
            learning_rate=fluid.layers.exponential_decay(learning_rate=1.0,
                                                         decay_steps=2100,
                                                         decay_rate=0.1,
                                                         staircase=True))
T
tangwei12 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393
        sgd_optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        trainer, startup = self.get_trainer()

        fake_init_ops = []
        for op in startup.global_block().ops:
            if op.type == "fake_init":
                fake_init_ops.append(op)

        self.assertEqual(len(fake_init_ops), 3)


394
class TestDecayedAdagrad(TranspilerTest):
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        opt = fluid.optimizer.DecayedAdagrad(learning_rate=0.1)
        opt.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer, _ = self.get_trainer()


414
class TestFtrl(TranspilerTest):
415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        opt = fluid.optimizer.Ftrl(learning_rate=0.1)
        opt.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        trainer, _ = self.get_trainer()


W
Wu Yi 已提交
434
class TestLRDecayConditional(TranspilerTest):
435

W
Wu Yi 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(
            learning_rate=fluid.layers.piecewise_decay([10000, 20000],
                                                       [1.0, 0.5, 1.0]))
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
451
    def transpiler_test_impl(self):
W
Wu Yi 已提交
452
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
453
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
454 455 456 457

        serv_op = pserver.blocks[0].ops[0]
        sub_blocks = []
        optimize_blocks = []
G
gongweibao 已提交
458
        for b in serv_op.all_attrs()["optimize_blocks"]:
W
Wu Yi 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
            optimize_blocks.append(b.idx)
        for b in pserver.blocks:
            if b.idx not in optimize_blocks:
                sub_blocks.append(b.idx)

        self.assertEqual(len(pserver.blocks), 7)
        lr_decay_ops = [op.type for op in pserver.blocks[1].ops]
        self.assertEqual(lr_decay_ops, [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
        # test the condition blocks
        for b in sub_blocks:
            if b == 0:
                continue
            block = pserver.blocks[b]
            self.assertEqual([op.type for op in block.ops], ["assign"])


class TestL2Decay(TranspilerTest):
482

W
Wu Yi 已提交
483 484 485 486 487 488
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(
            input=x,
            size=1000,
            act=None,
489 490
            param_attr=fluid.ParamAttr(name='fc_w',
                                       regularizer=fluid.regularizer.L2Decay()),
W
Wu Yi 已提交
491 492 493 494 495
            bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
496 497 498 499 500 501

        def filter(param):
            return param.name == "fc_w"

        clip = fluid.clip.GradientClipByValue(0.1, need_clip=filter)
        sgd_optimizer.minimize(avg_cost, grad_clip=clip)
W
Wu Yi 已提交
502

Q
qiaolongfei 已提交
503
    def transpiler_test_impl(self):
W
Wu Yi 已提交
504
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
505
        trainer, _ = self.get_trainer()
W
Wu Yi 已提交
506 507 508 509

        self.assertEqual(len(pserver.blocks), 3)
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "clip", "sgd"])
C
chengduo 已提交
510 511
        self.assertEqual([op.type for op in pserver.blocks[2].ops],
                         ["sum", "scale", "clip", "scale", "sum", "sgd"])
W
Wu Yi 已提交
512 513
        # TODO(typhoonzero): test clipping and L2Decay ops are removed from trainer

Y
Yancey 已提交
514

T
typhoonzero 已提交
515
class TestL2DecayWithPiecewise(TranspilerTest):
516

T
typhoonzero 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        base_lr = 1.0
        bd = [1, 10, 20, 30]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
        sgd_optimizer = fluid.optimizer.Momentum(
531 532
            learning_rate=fluid.layers.piecewise_decay(boundaries=bd,
                                                       values=lr),
T
typhoonzero 已提交
533 534 535 536
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(1e-4))
        sgd_optimizer.minimize(avg_cost)

Q
qiaolongfei 已提交
537
    def transpiler_test_impl(self):
T
typhoonzero 已提交
538
        pserver, startup = self.get_pserver(self.pserver1_ep)
G
gongweibao 已提交
539
        trainer, _ = self.get_trainer()
T
typhoonzero 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552

        self.assertEqual(len(pserver.blocks), 9)
        self.assertEqual([op.type for op in pserver.blocks[1].ops], [
            "increment", "cast", "fill_constant", "fill_constant", "less_than",
            "logical_not", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "fill_constant", "less_than", "logical_not", "logical_and",
            "logical_and", "conditional_block", "fill_constant",
            "conditional_block"
        ])
C
chengduo 已提交
553 554 555 556
        self.assertEqual([op.type for op in pserver.blocks[7].ops],
                         ["sum", "scale", "scale", "sum", "momentum"])
        self.assertEqual([op.type for op in pserver.blocks[8].ops],
                         ["sum", "scale", "scale", "sum", "momentum"])
Y
Yancey 已提交
557 558


Q
Qiao Longfei 已提交
559
class TestEmptyPserverOptimizeBlocks(TranspilerTest):
560

Q
Qiao Longfei 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        # only one parameter
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=False)
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        sgd_optimizer = fluid.optimizer.SGD(learning_rate=1.0)
        sgd_optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
        config.slice_var_up = False

        pserver, startup = self.get_pserver(ep=self.pserver2_ep, config=config)

        self.assertEqual(len(pserver.blocks), 2)
        self.assertEqual(len(pserver.blocks[1].ops), 0)


585
class TestDistLookupTableBase(TranspilerTest):
586

Q
Qiao Longfei 已提交
587
    def network_with_table(self, is_sparse, is_distributed):
T
tangwei12 已提交
588 589
        self.table_size = 1000
        self.emb_size = 64
T
tangwei12 已提交
590
        self.lookup_table_name = 'shared_w'
T
tangwei12 已提交
591

Q
Qiao Longfei 已提交
592
        def emb_pool(ids, table_name, is_distributed):
593 594 595 596 597 598
            emb = fluid.layers.embedding(input=ids,
                                         size=[self.table_size, self.emb_size],
                                         dtype='float32',
                                         param_attr=table_name,
                                         is_sparse=is_sparse,
                                         is_distributed=is_distributed)
599 600 601
            pool = fluid.layers.sequence_pool(input=emb, pool_type='average')
            return pool

602 603 604 605 606 607 608 609 610 611 612 613
        title_ids = fluid.layers.data(name='title_ids',
                                      shape=[1],
                                      dtype='int64',
                                      lod_level=1)
        brand_ids = fluid.layers.data(name='brand_ids',
                                      shape=[1],
                                      dtype='int64',
                                      lod_level=1)
        profile_ids = fluid.layers.data(name='brand_ids',
                                        shape=[1],
                                        dtype='int64',
                                        lod_level=1)
Q
Qiao Longfei 已提交
614 615 616
        title_emb = emb_pool(title_ids, self.lookup_table_name, is_distributed)
        brand_emb = emb_pool(brand_ids, self.lookup_table_name, is_distributed)
        profile_emb = emb_pool(profile_ids, "profile_emb", False)
617 618
        fc0 = fluid.layers.concat(input=[title_emb, brand_emb, profile_emb],
                                  axis=1)
619 620 621 622 623 624 625 626 627 628 629 630 631
        predict = fluid.layers.fc(input=fc0,
                                  size=2,
                                  act=None,
                                  param_attr=fluid.ParamAttr(name='fc_w'),
                                  bias_attr=fluid.ParamAttr(name='fc_b'))

        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)


Q
qiaolongfei 已提交
632
class TestLocalLookupTable(TestDistLookupTableBase):
633

Q
qiaolongfei 已提交
634 635 636 637 638 639
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

640
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
641 642 643 644 645 646 647
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
Q
qiaolongfei 已提交
648
                         ["sum", "scale", "adam", "scale", "scale"])
Q
qiaolongfei 已提交
649

650 651 652 653 654
        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["sum", "scale", "adam", "scale", "scale"])

G
gongweibao 已提交
655
        trainer, _ = self.get_trainer()
Q
qiaolongfei 已提交
656 657 658
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
Q
Qiao Longfei 已提交
659
            'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add',
S
sneaxiy 已提交
660 661
            'cross_entropy2', 'mean', 'fill_constant', 'mean_grad',
            'cross_entropy_grad2', 'elementwise_add_grad', 'send', 'mul_grad',
Q
Qiao Longfei 已提交
662 663 664 665
            'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'split_selected_rows', 'send', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sum', 'split_selected_rows', 'send', 'send_barrier', 'recv',
J
JiabinYang 已提交
666
            'recv', 'fetch_barrier'
Q
qiaolongfei 已提交
667 668 669 670
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


671
class TestDistLookupTable(TestDistLookupTableBase):
672

673 674 675 676 677 678
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

679
        self.assertEqual(len(pserver1.blocks), 6)
680 681 682 683
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
684
        # 4 prefetch -> lookup_sparse_table_read for data0
685
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
686
                         ["sum", "scale", "adam", "scale", "scale"])
Q
Qiao Longfei 已提交
687 688 689
        # 2 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["sum", "sgd"])
690
        # 3 prefetch -> lookup_sparse_table_read for data0
Q
Qiao Longfei 已提交
691
        self.assertEqual([op.type for op in pserver1.blocks[4].ops],
692
                         ["lookup_sparse_table_read"])
Q
Qiao Longfei 已提交
693 694 695 696 697 698 699 700
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])

        trainer, trainer_startup = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool',
            'sequence_pool', 'lookup_table', 'sequence_pool', 'concat', 'mul',
S
sneaxiy 已提交
701 702
            'elementwise_add', 'cross_entropy2', 'mean', 'fill_constant',
            'mean_grad', 'cross_entropy_grad2', 'elementwise_add_grad', 'send',
Q
Qiao Longfei 已提交
703 704 705 706
            'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'split_selected_rows', 'send',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'sum', 'split_ids', 'send', 'send_barrier',
707
            'recv', 'recv', 'fetch_barrier'
Q
Qiao Longfei 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
        startup_ops = [
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'uniform_random',
            'uniform_random', 'recv', 'recv', 'recv', 'fetch_barrier', 'concat',
            'fake_init'
        ]
        self.assertEqual([op.type for op in trainer_startup.blocks[0].ops],
                         startup_ops)


Q
qiaolongfei 已提交
722
class TestAsyncLocalLookupTable(TestDistLookupTableBase):
723

Q
qiaolongfei 已提交
724 725 726 727 728
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
Q
qiaolongfei 已提交
729
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
730

731
        self.assertEqual(len(pserver1.blocks), 4)
Q
qiaolongfei 已提交
732 733 734 735 736 737 738 739
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["adam", "scale", "scale"])
740 741 742 743
        # 3 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["adam", "scale", "scale"])
Q
qiaolongfei 已提交
744

G
gongweibao 已提交
745
        trainer, _ = self.get_trainer(config)
Q
qiaolongfei 已提交
746 747 748
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
749
            'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add',
S
sneaxiy 已提交
750 751
            'cross_entropy2', 'mean', 'fill_constant', 'mean_grad',
            'cross_entropy_grad2', 'elementwise_add_grad', 'send', 'mul_grad',
Q
Qiao Longfei 已提交
752 753 754
            'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'split_selected_rows', 'send', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
J
JiabinYang 已提交
755
            'sum', 'split_selected_rows', 'send', 'recv', 'recv'
Q
qiaolongfei 已提交
756 757 758 759
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


Q
qiaolongfei 已提交
760
class TestAsyncDistLookupTable(TestDistLookupTableBase):
761

Q
qiaolongfei 已提交
762 763 764 765 766 767
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()

Q
qiaolongfei 已提交
768
        pserver1, startup1 = self.get_pserver(self.pserver1_ep, config, False)
Q
qiaolongfei 已提交
769

770
        self.assertEqual(len(pserver1.blocks), 6)
Q
qiaolongfei 已提交
771 772 773 774
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["adam", "scale", "scale"])
775 776 777 778 779
        # 2 optimize for table adam
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["adam", "scale", "scale"])
        # 3 optimize for table sgd
        self.assertEqual([op.type for op in pserver1.blocks[3].ops], ["sgd"])
780
        # 4 prefetch -> lookup_sparse_table_read for data0
781
        self.assertEqual([op.type for op in pserver1.blocks[4].ops],
782
                         ["lookup_sparse_table_read"])
783 784
        # 5 save table
        self.assertEqual([op.type for op in pserver1.blocks[5].ops], ["save"])
Q
qiaolongfei 已提交
785

Q
Qiao Longfei 已提交
786
        trainer, trainer_startup = self.get_trainer(config)
Q
qiaolongfei 已提交
787 788
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
S
seiriosPlus 已提交
789
            'split_ids', 'prefetch', 'merge_ids', 'sequence_pool',
Q
Qiao Longfei 已提交
790
            'sequence_pool', 'lookup_table', 'sequence_pool', 'concat', 'mul',
S
sneaxiy 已提交
791 792
            'elementwise_add', 'cross_entropy2', 'mean', 'fill_constant',
            'mean_grad', 'cross_entropy_grad2', 'elementwise_add_grad', 'send',
Q
Qiao Longfei 已提交
793 794 795
            'mul_grad', 'send', 'concat_grad', 'sequence_pool_grad',
            'lookup_table_grad', 'split_selected_rows', 'send',
            'sequence_pool_grad', 'lookup_table_grad', 'sequence_pool_grad',
796
            'lookup_table_grad', 'sum', 'split_ids', 'send', 'recv', 'recv'
Q
Qiao Longfei 已提交
797
        ]
Q
qiaolongfei 已提交
798
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)
Q
Qiao Longfei 已提交
799 800 801 802 803 804 805 806 807 808
        startup_ops = [
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'fill_constant', 'fill_constant',
            'fill_constant', 'fill_constant', 'uniform_random',
            'uniform_random', 'recv', 'recv', 'recv', 'fetch_barrier', 'concat',
            'fake_init'
        ]
        self.assertEqual([op.type for op in trainer_startup.blocks[0].ops],
                         startup_ops)
Q
qiaolongfei 已提交
809 810


T
tangwei12 已提交
811
class TestDistLookupTableSliceSize(TestDistLookupTableBase):
812

T
tangwei12 已提交
813 814 815 816 817
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        config = fluid.DistributeTranspilerConfig()
T
tangwei12 已提交
818
        pserver1, _ = self.get_pserver(self.pserver1_ep, config)
T
tangwei12 已提交
819 820 821 822 823 824 825

        self.assertTrue(self.transpiler.has_distributed_lookup_table)
        lookup_table_var = pserver1.global_block().vars[
            self.transpiler.table_name]
        row_size = lookup_table_var.shape[0]
        calc_row_size = int(math.ceil(self.table_size / self.pservers))
        self.assertEqual(row_size, calc_row_size)
T
tangwei12 已提交
826 827


T
tangwei12 已提交
828
class TestDistArgsInProgram(TestDistLookupTableBase):
829

T
tangwei12 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843
    def net_conf(self):
        self.network_with_table(is_sparse=True, is_distributed=True)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()

        self.assertTrue(trainer._is_distributed)
        self.assertTrue(trainer._is_chief)
        self.assertEqual(trainer._distributed_lookup_table,
                         self.lookup_table_name)
        self.assertEqual(trainer._endpoints,
                         [self.pserver1_ep, self.pserver2_ep])


W
Wu Yi 已提交
844
class TestRMSPropOptimizer(TranspilerTest):
845

W
Wu Yi 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, startup = self.get_pserver(self.pserver1_ep)
        pserver2, startup2 = self.get_pserver(self.pserver2_ep)

        self.assertEqual(len(pserver.blocks), 3)
        # block1~2: optimize pass
        self.assertEqual([op.type for op in pserver.blocks[1].ops],
                         ["sum", "scale", "rmsprop"])
        # the variable #fc_w will be split into two blocks
        fc_w_var = startup.global_block().var("fc_w.block1")
        self.assertEqual(fc_w_var.shape, (500, 1000))
        moment_var = startup.global_block().var("momentum_1")
        self.assertEqual(moment_var.shape, (500, 1000))


T
tangwei12 已提交
874
class TestLoadSliceVar(TranspilerTest):
875

T
tangwei12 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
    def net_conf(self):
        x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
        y_predict = fluid.layers.fc(input=x,
                                    size=1000,
                                    act=None,
                                    param_attr=fluid.ParamAttr(name='fc_w'),
                                    bias_attr=fluid.ParamAttr(name='fc_b'))
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')
        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
        optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
        optimizer.minimize(avg_cost)

    def transpiler_test_impl(self):
        pserver, _ = self.get_pserver(self.pserver1_ep)
        pserver2, _ = self.get_pserver(self.pserver2_ep)

893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
        vars_ps1 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
            self.pserver1_ep)
        vars_ps2 = pserver._parameters_on_pservers.get_distributed_vars_by_ep(
            self.pserver2_ep)

        self.assertTrue(vars_ps1)
        self.assertTrue(vars_ps2)

        for idx in six.moves.xrange(len(vars_ps1)):
            total_numel = 0
            ps1_numel, ps2_numel = 0, 0

            ps1_var = vars_ps1[idx]

            if not ps1_var.is_slice:
                total_numel = six.moves.reduce(lambda x, y: x * y,
                                               vars_ps1[idx].origin.shape)
                ps1_numel = six.moves.reduce(lambda x, y: x * y,
                                             vars_ps1[idx].slice.shape)
            else:
                ps2_var = None
                for var in vars_ps2:
                    if var.origin.name == ps1_var.origin.name:
                        ps2_var = var
                        break

                total_numel = six.moves.reduce(lambda x, y: x * y,
                                               ps1_var.origin.shape)
                ps1_numel = six.moves.reduce(lambda x, y: x * y,
                                             ps1_var.slice.shape)
                ps2_numel = six.moves.reduce(lambda x, y: x * y,
                                             ps2_var.slice.shape)

            self.assertEqual(total_numel, ps1_numel + ps2_numel)
T
tangwei12 已提交
927 928


W
Wu Yi 已提交
929
class TestNCCL2Transpile(TranspilerTest):
930

W
Wu Yi 已提交
931
    def test_nccl2_transpile(self):
T
tangwei12 已提交
932
        if fluid.core.is_compiled_with_cuda():  # test nccl2 only with cuda
J
JiabinYang 已提交
933 934 935 936 937 938 939
            main = fluid.Program()
            startup = fluid.Program()
            with fluid.program_guard(main, startup):
                self.net_conf()

            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
W
Wu Yi 已提交
940
            config.wait_port = False
J
JiabinYang 已提交
941
            t = fluid.DistributeTranspiler(config=config)
942 943 944 945
            t.transpile(0,
                        trainers="127.0.0.1:6174,127.0.0.1:6175",
                        current_endpoint="127.0.0.1:6174",
                        startup_program=startup)
J
JiabinYang 已提交
946 947 948
            print([op.type for op in startup.global_block().ops])
            self.assertEqual(startup.global_block().ops[-1].type, "gen_nccl_id")
            self.assertIsNotNone(startup.global_block().vars.get("NCCLID"))
949
            gc.collect()
J
JiabinYang 已提交
950 951
        else:
            pass
W
Wu Yi 已提交
952 953


Q
Qiao Longfei 已提交
954 955
# test for remote prefetch
class TestRemoteLookupTable(TestDistLookupTableBase):
956

Q
Qiao Longfei 已提交
957
    def net_conf(self):
958 959
        import os
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
Q
Qiao Longfei 已提交
960
        self.network_with_table(is_sparse=True, is_distributed=False)
Q
Qiao Longfei 已提交
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984

    def transpiler_test_impl(self):
        pserver1, startup1 = self.get_pserver(self.pserver1_ep)

        self.assertEqual(len(pserver1.blocks), 4)
        # 0 listen_and_serv
        # 1 optimize for fc_w or fc_b adam
        self.assertEqual([op.type for op in pserver1.blocks[1].ops],
                         ["sum", "scale", "adam", "scale", "scale"])
        # 2 optimize for table adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[2].ops],
                         ["sum", "scale", "adam", "scale", "scale"])

        # 3 optimize for table 2 adam
        # NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
        self.assertEqual([op.type for op in pserver1.blocks[3].ops],
                         ["sum", "scale", "adam", "scale", "scale"])

        trainer, _ = self.get_trainer()
        self.assertEqual(len(trainer.blocks), 1)
        ops = [
            'lookup_table', 'sequence_pool', 'lookup_table', 'sequence_pool',
            'lookup_table', 'sequence_pool', 'concat', 'mul', 'elementwise_add',
S
sneaxiy 已提交
985 986
            'cross_entropy2', 'mean', 'fill_constant', 'mean_grad',
            'cross_entropy_grad2', 'elementwise_add_grad', 'send', 'mul_grad',
Q
Qiao Longfei 已提交
987 988 989 990
            'send', 'concat_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'split_selected_rows', 'send', 'sequence_pool_grad',
            'lookup_table_grad', 'sequence_pool_grad', 'lookup_table_grad',
            'sum', 'split_selected_rows', 'send', 'send_barrier', 'recv',
Q
Qiao Longfei 已提交
991
            'recv', 'fetch_barrier'
Q
Qiao Longfei 已提交
992 993 994 995
        ]
        self.assertEqual([op.type for op in trainer.blocks[0].ops], ops)


996 997
# test for remote prefetch
class TestRemoteNce(TestDistLookupTableBase):
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    def network_with_table(self, is_sparse, is_distributed):

        num_total_classes = 20
        sampler = "uniform"
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

        input = fluid.layers.data(name="input", shape=[10], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")

        w_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 10],
            dtype='float32',
            name='nce_w',
            initializer=fluid.initializer.ConstantInitializer())
        b_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 1],
            dtype='float32',
            name='nce_b',
            initializer=fluid.initializer.ConstantInitializer())

        cost = fluid.layers.nce(input=input,
                                label=label,
                                num_total_classes=num_total_classes,
                                sampler=sampler,
                                custom_dist=nid_freq_arr.tolist(),
                                sample_weight=None,
                                param_attr='nce_w',
                                bias_attr='nce_b',
                                seed=1,
                                num_neg_samples=5,
                                is_sparse=is_sparse)
        avg_cost = fluid.layers.mean(cost)
        # optimizer
        optimizer = fluid.optimizer.Adam(learning_rate=0.003)
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
T
tangwei12 已提交
1042

1043 1044
        out_vars = ["nce_w"]
        in_vars = ["nce_b"]
T
tangwei12 已提交
1045 1046 1047

        recv_var_names = []

1048 1049
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
T
tangwei12 已提交
1050 1051 1052 1053 1054 1055 1056
                for var in op.output("Out"):
                    recv_var_names.append(var)

        for out_var in out_vars:
            self.assertFalse(out_var in recv_var_names)
        for in_var in in_vars:
            self.assertTrue(in_var in recv_var_names)
1057 1058


J
JiabinYang 已提交
1059 1060
# test for remote prefetch
class TestRemoteHsigmoid(TestDistLookupTableBase):
1061

J
JiabinYang 已提交
1062 1063
    def network_with_table(self, is_sparse, is_distributed):

1064
        num_total_classes = 3
J
JiabinYang 已提交
1065

1066
        input = fluid.layers.data(name="input", shape=[1], dtype="float32")
J
JiabinYang 已提交
1067
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
1068 1069 1070 1071 1072 1073
        path_table = fluid.layers.data(name='path_table',
                                       shape=[3],
                                       dtype='int64')
        path_code = fluid.layers.data(name='path_code',
                                      shape=[3],
                                      dtype='int64')
J
JiabinYang 已提交
1074 1075 1076 1077 1078 1079
        w_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 10],
            dtype='float32',
            name='hs_w',
            initializer=fluid.initializer.ConstantInitializer())
        b_param = fluid.default_main_program().global_block().create_parameter(
1080
            shape=[3, 1],
J
JiabinYang 已提交
1081 1082 1083 1084
            dtype='float32',
            name='hs_b',
            initializer=fluid.initializer.ConstantInitializer())

1085
        emb = fluid.layers.embedding(
J
JiabinYang 已提交
1086
            input=input,
1087 1088 1089 1090 1091
            is_sparse=is_sparse,
            size=[3, 3],
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                scale=1 / math.sqrt(num_total_classes))))

1092 1093 1094 1095 1096 1097 1098
        cost = fluid.layers.hsigmoid(input=emb,
                                     label=label,
                                     num_classes=num_total_classes,
                                     path_table=path_table,
                                     path_code=path_code,
                                     is_custom=True,
                                     is_sparse=is_sparse)
J
JiabinYang 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        avg_cost = fluid.layers.mean(cost)
        # optimizer
        optimizer = fluid.optimizer.SGD(learning_rate=0.003)
        optimizer.minimize(avg_cost)

    def net_conf(self):
        import os
        os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
        self.network_with_table(is_sparse=True, is_distributed=False)

    def transpiler_test_impl(self):
        trainer, _ = self.get_trainer()
1111
        params_to_check = list()
J
JiabinYang 已提交
1112
        for op in trainer.blocks[0].ops:
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
            if op.type == "hierarchical_sigmoid":
                params_to_check = [op.input("W")[0], op.input("Bias")[0]]
                for name in ["epmap", "table_names", "epmap"]:
                    assert op.has_attr(name)
                    if name == "epmap":
                        assert op.attr(name)[0] == u'127.0.0.1:6174'
                    elif name == "table_names":
                        assert op.attr(name)[0] == u'hierarchical_sigmoid_0.w_0'
                    else:
                        assert op.attr(name) == 3
            elif op.type == "lookup_table":
                params_to_check.append(op.input("W")[0])
            else:
J
JiabinYang 已提交
1126
                pass
1127 1128 1129 1130 1131 1132 1133
        op_count = 0
        for op in trainer.blocks[0].ops:
            if op.type == "recv":
                assert len(op.output("Out")) == 1
                assert op.output("Out")[0] == u'hierarchical_sigmoid_0.b_0'
                op_count += 1
        assert op_count == 1
J
JiabinYang 已提交
1134 1135


Y
Yancey 已提交
1136 1137
if __name__ == "__main__":
    unittest.main()