io.py 53.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

24
from paddle.fluid import layers
X
Xin Pan 已提交
25
from paddle.fluid.executor import Executor
26
from paddle.fluid.evaluator import Evaluator
27
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
28
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
29 30
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
31
from . import core
32
from .. import compat as cpt
33 34

__all__ = [
T
tangwei12 已提交
35
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
36
    'load_persistables', 'save_inference_model', 'load_inference_model'
S
sneaxiy 已提交
37
] + reader.__all__
38

39 40
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
41

42 43

def is_parameter(var):
F
fengjiayi 已提交
44 45
    """
    Check whether the given variable is an instance of Parameter.
46 47

    Args:
F
fengjiayi 已提交
48
        var(Variable): The variable to be checked.
49 50

    Returns:
F
fengjiayi 已提交
51 52 53 54 55 56 57 58
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
59
    """
60 61 62 63
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

77
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
78 79
            res = fluid.io.is_persistable(param)
    """
80
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
81 82
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
83
        return False
84 85 86 87 88
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
104 105


106 107 108 109 110
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
111
              filename=None):
112
    """
F
fengjiayi 已提交
113 114
    Save variables to the given directory by executor.

115 116 117 118
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
119
    are assigned, the `main_program` and the `predicate` will be ignored.
120

121 122 123
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
124
    use `filename` to specify it.
125

F
fengjiayi 已提交
126 127 128
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
129 130
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
131 132
                                    be used automatically.
                                    Default: None
133
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
134 135
                                   It has a higher priority than the `main_program`.
                                   Default: None
136 137 138 139
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
140 141
                                  `vars` is None).
                                  Default: None
142
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
143 144 145 146 147 148 149 150 151 152 153 154
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

155 156 157 158 159 160 161 162 163 164 165 166
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
167

168
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
169 170 171 172
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
173
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
174
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
175 176 177 178 179
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
180 181
            var_list = [w, b]
            path = "./my_paddle_vars"
182
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
183 184
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
185
            # saved in the same file named 'var_file' in the path "./my_paddle_vars".
186
    """
L
lujun 已提交
187
    save_dirname = os.path.normpath(dirname)
188
    if vars is None:
189
        if main_program is None:
Y
Yu Yang 已提交
190
            main_program = default_main_program()
191
        if not isinstance(main_program, Program):
192 193 194 195
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
196
            main_program=main_program,
L
lujun 已提交
197
            dirname=save_dirname,
198
            vars=list(filter(predicate, main_program.list_vars())),
199
            filename=filename)
200 201 202
    else:
        save_program = Program()
        save_block = save_program.global_block()
203

204 205 206 207 208
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

209
        save_var_map = {}
210
        for each_var in vars:
211 212 213
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
214
            new_var = _clone_var_in_block_(save_block, each_var)
215
            if filename is None:
216 217 218 219
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
L
lujun 已提交
220 221 222
                    attrs={
                        'file_path': os.path.join(save_dirname, new_var.name)
                    })
223 224 225
            else:
                save_var_map[new_var.name] = new_var

226
        if filename is not None:
227 228 229 230
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

231
            save_block.append_op(
232 233
                type='save_combine',
                inputs={'X': save_var_list},
234
                outputs={},
L
lujun 已提交
235
                attrs={'file_path': os.path.join(save_dirname, filename)})
236

237 238 239
        executor.run(save_program)


240
def save_params(executor, dirname, main_program=None, filename=None):
241
    """
F
fengjiayi 已提交
242 243 244
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

245 246 247
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
248 249
    the file name.

250 251 252
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
253 254 255
    and `load_persistables()` instead. If you want to save your model for
    the inference, please use the `save_inference_model` API. You can refer
    to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
256 257 258 259 260 261 262 263

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
264 265
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
266 267 268 269 270 271 272 273 274
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
275 276
            import paddle.fluid as fluid

F
fengjiayi 已提交
277 278 279
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
280
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
281
                                 main_program=None)
282 283 284 285
    """
    save_vars(
        executor,
        dirname=dirname,
286
        main_program=main_program,
287
        vars=None,
288
        predicate=is_parameter,
289
        filename=filename)
290 291


292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


472
def save_persistables(executor, dirname, main_program=None, filename=None):
473
    """
474 475
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
476 477
    or file `filename`.

478 479 480
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
481 482 483 484 485
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
486 487
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
488 489
                                    program will be used automatically.
                                    Default: None
490
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
491 492 493 494 495 496 497 498 499
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
500 501
            import paddle.fluid as fluid

F
fengjiayi 已提交
502 503
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
504
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
505
            prog = fluid.default_main_program()
506
            fluid.io.save_persistables(executor=exe, dirname=param_path,
507
                                       main_program=prog)
508
    """
509 510 511 512 513 514 515 516 517 518 519 520 521

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
522 523


524 525 526 527 528
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
529
              filename=None):
530
    """
F
fengjiayi 已提交
531 532
    Load variables from the given directory by executor.

533 534 535 536
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
537 538
    are assigned, the `main_program` and the `predicate` will be ignored.

539 540 541
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
542
    use `filename` to specify it.
543

F
fengjiayi 已提交
544 545 546
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
547 548
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
549 550
                                    be used automatically.
                                    Default: None
551
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
552 553
                                   It has a higher priority than the `main_program`.
                                   Default: None
554 555 556 557
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
558 559
                                  `vars` is None).
                                  Default: None
560
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
561 562 563 564 565 566 567 568 569 570 571 572
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

573 574 575 576 577 578 579 580 581 582 583 584
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
585

586
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
587 588 589 590
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
591 592 593
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
594
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
595 596 597 598
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.

            # The second usage: using `vars` to specify variables
599 600 601 602
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
603
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
604
                               filename="vars_file")
605 606
            # w and b will be loaded. And they are supposed to haven
            # been saved in the same file named 'var_file' in the path "./my_paddle_vars".
607
    """
L
lujun 已提交
608
    load_dirname = os.path.normpath(dirname)
609
    if vars is None:
610
        if main_program is None:
Y
Yu Yang 已提交
611
            main_program = default_main_program()
612
        if not isinstance(main_program, Program):
613 614 615 616
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
617
            dirname=load_dirname,
T
tangwei12 已提交
618
            main_program=main_program,
619
            vars=list(filter(predicate, main_program.list_vars())),
620
            filename=filename)
621 622 623
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
624

625 626 627 628 629
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

630
        load_var_map = {}
631 632
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
633 634
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
635
            new_var = _clone_var_in_block_(load_block, each_var)
636
            if filename is None:
637 638 639 640
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
641 642 643
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
644 645 646
            else:
                load_var_map[new_var.name] = new_var

647
        if filename is not None:
648 649 650 651
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

652
            load_block.append_op(
653
                type='load_combine',
654
                inputs={},
655
                outputs={"Out": load_var_list},
L
lujun 已提交
656
                attrs={'file_path': os.path.join(load_dirname, filename)})
657 658 659
        executor.run(load_prog)


660
def load_params(executor, dirname, main_program=None, filename=None):
661
    """
F
fengjiayi 已提交
662
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
663
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
664 665
    the file `filename`.

666 667 668
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
669 670
    `filename` to specify the file name.

671 672 673 674
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
675 676 677
    If you want to load the pre-trained model structure and parameters
    for the inference, please use the `load_inference_model` API. You can
    refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
678 679 680 681 682 683 684 685

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
686
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
687 688 689 690 691 692 693 694 695 696 697 698
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
699
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
700
                                main_program=None)
701 702
    """
    load_vars(
703 704 705
        executor,
        dirname=dirname,
        main_program=main_program,
706
        predicate=is_parameter,
707
        filename=filename)
708 709


710
def load_persistables(executor, dirname, main_program=None, filename=None):
711
    """
712 713
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
714 715
    `dirname` or the file `filename`.

716 717 718
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
719 720 721 722 723
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
724 725
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
726 727
                                    program will be used automatically.
                                    Default: None
728
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
729 730 731 732 733 734 735 736 737 738 739 740
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
741
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
742
                                       main_program=None)
743
    """
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
822 823 824 825
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
875 876


877 878 879
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
880 881 882
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
883 884
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
885 886 887
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
888

889
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
890
        out = global_block.var(name)
W
Wu Yi 已提交
891
        global_block._prepend_op(
K
Kexin Zhao 已提交
892 893
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
894
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
895 896 897
            attrs={'col': i})


898 899 900
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
901 902
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
903 904 905
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
906

907
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
908 909 910 911 912 913 914
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


915 916 917 918
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
919
                         main_program=None,
920
                         model_filename=None,
921
                         params_filename=None,
T
tangwei12 已提交
922 923
                         export_for_deployment=True,
                         program_only=False):
924
    """
F
fengjiayi 已提交
925 926
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.
927 928 929 930
    If you just want to save parameters of your trained model, please use the
    `save_params` API. You can refer to :ref:`api_guide_model_save_reader_en` for
    more details.

F
fengjiayi 已提交
931 932 933

    Args:
        dirname(str): The directory path to save the inference model.
934
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
935
                                     during inference.
936
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
937 938
                                     results.
        executor(Executor): The executor that saves the inference model.
939 940
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
941 942
                                    the default main program will be used.
                                    Default: None.
943 944
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
945
                                  `__model__` will be used.
946 947
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
948
                                   in separate files .
X
Xin Pan 已提交
949 950 951 952 953
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
T
tangwei12 已提交
954
        program_only(bool): If True, It will save inference program only, and do not save params of Program.
955

F
fengjiayi 已提交
956
    Returns:
F
flame 已提交
957
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
958 959 960 961 962 963 964

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
965

966 967
            import paddle.fluid as fluid

F
fengjiayi 已提交
968 969
            path = "./infer_model"

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
992
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
993
            # and parameters are going to be saved in separate files under folder
994
            # "./infer_model".
995 996

    """
M
minqiyang 已提交
997
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
998
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
999
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1000
        if len(feeded_var_names) > 0:
1001
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1002
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1003
                    isinstance(name, six.string_types)
1004
                    for name in feeded_var_names)):
M
minqiyang 已提交
1005
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1006 1007

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1008
        target_vars = [target_vars]
X
Xin Pan 已提交
1009
    elif export_for_deployment:
1010 1011
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1012 1013
            raise ValueError("'target_vars' should be a list of Variable.")

1014
    if main_program is None:
Y
Yu Yang 已提交
1015
        main_program = default_main_program()
D
dzhwinter 已提交
1016
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
1017 1018 1019 1020 1021 1022
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
1023

1024 1025 1026 1027 1028
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1029
        for i, var in enumerate(target_vars):
1030
            if isinstance(var, Variable):
F
flame 已提交
1031 1032 1033
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1034
        target_vars = uniq_target_vars
F
flame 已提交
1035
    target_var_name_list = [var.name for var in target_vars]
1036

1037
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1038
    save_dirname = dirname
1039
    try:
L
lujun 已提交
1040 1041
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1042 1043 1044 1045
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1046 1047 1048 1049
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1050
    model_basename = os.path.join(save_dirname, model_basename)
1051

X
Xin Pan 已提交
1052 1053 1054 1055
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1056 1057 1058

    origin_program = main_program.clone()

X
Xin Pan 已提交
1059
    if export_for_deployment:
X
Xin Pan 已提交
1060 1061
        main_program = main_program.clone()
        global_block = main_program.global_block()
1062
        need_to_remove_op_index = []
X
Xin Pan 已提交
1063 1064 1065
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1066 1067 1068 1069 1070
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1071
        main_program.desc.flush()
X
Xin Pan 已提交
1072

X
Xin Pan 已提交
1073 1074
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1075 1076
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1077 1078 1079 1080 1081
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1082 1083 1084
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1085 1086
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1087

T
tangwei12 已提交
1088 1089 1090 1091 1092 1093
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1094 1095
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1096 1097
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1098

L
lujun 已提交
1099
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1100
    return target_var_name_list
X
fix  
Xin Pan 已提交
1101

1102

1103 1104 1105
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1106 1107
                         params_filename=None,
                         pserver_endpoints=None):
1108
    """
1109 1110 1111 1112
    Load inference model from a directory. By this API, you can get the model
    structure(inference program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the `load_params` API.
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1113

F
fengjiayi 已提交
1114 1115 1116 1117
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1118
                                  If it is None, the default filename
F
fengjiayi 已提交
1119 1120 1121
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1122 1123 1124
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1125
                                   files, set it as 'None'.
1126 1127 1128 1129
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1130 1131 1132

    Returns:
        tuple: The return of this function is a tuple with three elements:
1133 1134 1135 1136 1137
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1138 1139 1140 1141 1142 1143 1144 1145
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
            import paddle.fluid as fluid
            import numpy as np
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
1159
            path = "./infer_model"
1160 1161 1162
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
1163 1164
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
F
fengjiayi 已提交
1165 1166 1167 1168
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1169 1170
            # endpoints is your pserver endpoints list, the above is just an example
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1171
            # if we need lookup table, we will use:
1172
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1173 1174
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1175
                                              pserver_endpoints=endpoints))
1176

1177
            # In this example, the inference program was saved in the
1178
            # "./infer_model/__model__" and parameters were saved in
1179
            # separate files in "./infer_model".
1180 1181
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1182
            # program to get the inference result.
1183
    """
L
lujun 已提交
1184 1185
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1186 1187
        raise ValueError("There is no directory named '%s'", dirname)

1188 1189
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1190
    else:
1191
        model_filename = "__model__"
L
lujun 已提交
1192
    model_filename = os.path.join(load_dirname, model_filename)
1193 1194 1195

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1196

1197
    with open(model_filename, "rb") as f:
1198 1199
        program_desc_str = f.read()

1200
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1201
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1202 1203 1204
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1205
    load_persistables(executor, load_dirname, program, params_filename)
1206

T
tangwei12 已提交
1207
    if pserver_endpoints:
T
tangwei12 已提交
1208
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1209

1210 1211
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1212 1213 1214 1215 1216
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1217 1218


T
tangwei12 已提交
1219 1220 1221
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1222 1223
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1224
    program._sync_with_cpp()
T
tangwei12 已提交
1225
    return program
T
tangwei12 已提交
1226 1227


X
xuwei06 已提交
1228 1229
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1241

F
fengjiayi 已提交
1242 1243
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1244

F
fengjiayi 已提交
1245 1246 1247
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1248

X
xuwei06 已提交
1249
    """
X
xuwei06 已提交
1250 1251
    assert is_parameter(para)

X
xuwei06 已提交
1252 1253 1254 1255 1256 1257 1258 1259
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1260
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1261

F
fengjiayi 已提交
1262 1263 1264 1265 1266 1267 1268
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1269

F
fengjiayi 已提交
1270 1271
    Returns:
        numpy.array: The parameter's values.
1272

F
fengjiayi 已提交
1273 1274 1275 1276 1277
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1278

F
fengjiayi 已提交
1279 1280 1281 1282 1283
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1284 1285
    """
    if program is None:
Y
Yu Yang 已提交
1286
        program = default_main_program()
X
xuwei06 已提交
1287 1288
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)