io.py 35.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
T
tangwei12 已提交
19 20
import time
import shutil
21
import six
22

X
Xin Pan 已提交
23
from paddle.fluid.executor import Executor
24
from paddle.fluid.evaluator import Evaluator
25
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable
K
fix bug  
Kexin Zhao 已提交
26
from . import core
27 28

__all__ = [
T
tangwei12 已提交
29 30
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
    'load_persistables', 'save_inference_model', 'load_inference_model',
T
tangwei12 已提交
31
    'get_inference_program'
32 33 34 35
]


def is_parameter(var):
F
fengjiayi 已提交
36 37
    """
    Check whether the given variable is an instance of Parameter.
38 39

    Args:
F
fengjiayi 已提交
40
        var(Variable): The variable to be checked.
41 42

    Returns:
F
fengjiayi 已提交
43 44 45 46 47 48 49 50
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
51
    """
52 53 54 55
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_persistable(param)
    """
72
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
73 74
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
75
        return False
76 77 78 79 80 81 82 83
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
84
        dtype=var.dtype,
85 86 87 88 89
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


90 91 92 93 94
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
95
              filename=None):
96
    """
F
fengjiayi 已提交
97 98
    Save variables to the given directory by executor.

99 100 101 102
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
103
    are assigned, the `main_program` and the `predicate` will be ignored.
104

105 106 107
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
108
    use `filename` to specify it.
109

F
fengjiayi 已提交
110 111 112
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
113 114
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
115 116
                                    be used automatically.
                                    Default: None
117
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
118 119
                                   It has a higher priority than the `main_program`.
                                   Default: None
120 121 122 123
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
124 125
                                  `vars` is None).
                                  Default: None
126
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
156
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
157 158 159
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
160 161
    """
    if vars is None:
162
        if main_program is None:
Y
Yu Yang 已提交
163
            main_program = default_main_program()
164
        if not isinstance(main_program, Program):
165 166 167 168 169
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
            dirname=dirname,
170
            vars=list(filter(predicate, main_program.list_vars())),
171
            filename=filename)
172 173 174
    else:
        save_program = Program()
        save_block = save_program.global_block()
175 176

        save_var_map = {}
177
        for each_var in vars:
178 179 180
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
181
            new_var = _clone_var_in_block_(save_block, each_var)
182
            if filename is None:
183 184 185 186 187 188 189 190
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

191
        if filename is not None:
192 193 194 195
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

196
            save_block.append_op(
197 198
                type='save_combine',
                inputs={'X': save_var_list},
199
                outputs={},
200
                attrs={'file_path': os.path.join(dirname, filename)})
201

202 203 204
        executor.run(save_program)


205
def save_params(executor, dirname, main_program=None, filename=None):
206
    """
F
fengjiayi 已提交
207 208 209
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

210 211 212
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
213 214
    the file name.

215 216 217
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
F
fengjiayi 已提交
218 219 220 221 222 223 224 225 226
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
227 228
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
229 230 231 232 233 234 235 236 237 238 239 240
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
241
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
242
                                 main_program=None)
243 244 245 246
    """
    save_vars(
        executor,
        dirname=dirname,
247
        main_program=main_program,
248
        vars=None,
249
        predicate=is_parameter,
250
        filename=filename)
251 252


253
def save_persistables(executor, dirname, main_program=None, filename=None):
254
    """
255 256
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
257 258
    or file `filename`.

259 260 261
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
262 263 264 265 266
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
267 268
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
269 270
                                    program will be used automatically.
                                    Default: None
271
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
272 273 274 275 276 277 278 279 280 281 282 283
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
284
            fluid.io.save_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
285
                                       main_program=None)
286 287 288 289
    """
    save_vars(
        executor,
        dirname=dirname,
290
        main_program=main_program,
291
        vars=None,
292
        predicate=is_persistable,
293
        filename=filename)
294 295


296 297 298 299 300
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
301
              filename=None):
302
    """
F
fengjiayi 已提交
303 304
    Load variables from the given directory by executor.

305 306 307 308
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
309 310
    are assigned, the `main_program` and the `predicate` will be ignored.

311 312 313
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
314
    use `filename` to specify it.
315

F
fengjiayi 已提交
316 317 318
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
319 320
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
321 322
                                    be used automatically.
                                    Default: None
323
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
324 325
                                   It has a higher priority than the `main_program`.
                                   Default: None
326 327 328 329
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
330 331
                                  `vars` is None).
                                  Default: None
332
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
352

F
fengjiayi 已提交
353 354 355 356 357 358 359 360 361
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
362
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
363
                               filename="vars_file")
364
            # var_a, var_b and var_c will be loaded. And they are supposed to haven
F
fengjiayi 已提交
365
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
366 367
    """
    if vars is None:
368
        if main_program is None:
Y
Yu Yang 已提交
369
            main_program = default_main_program()
370
        if not isinstance(main_program, Program):
371 372 373 374 375
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
T
tangwei12 已提交
376
            main_program=main_program,
377
            vars=list(filter(predicate, main_program.list_vars())),
378
            filename=filename)
379 380 381
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
382 383

        load_var_map = {}
384 385
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
386 387
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
388
            new_var = _clone_var_in_block_(load_block, each_var)
389
            if filename is None:
390 391 392 393 394 395 396 397
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

398
        if filename is not None:
399 400 401 402
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

403
            load_block.append_op(
404
                type='load_combine',
405
                inputs={},
406
                outputs={"Out": load_var_list},
407
                attrs={'file_path': os.path.join(dirname, filename)})
408 409
        executor.run(load_prog)

C
chengduo 已提交
410 411 412
        if main_program is None:
            main_program = default_main_program()

413 414
        # load slice vars on pserver, if have it.
        _load_slice_up_vars(executor, dirname,
T
tangwei12 已提交
415
                            main_program._slice_vars_and_attrs)
416

417

418
def load_params(executor, dirname, main_program=None, filename=None):
419
    """
F
fengjiayi 已提交
420
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
421
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
422 423
    the file `filename`.

424 425 426
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
427 428
    `filename` to specify the file name.

429 430 431 432
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
F
fengjiayi 已提交
433 434 435 436 437 438 439 440

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
441
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
442 443 444 445 446 447 448 449 450 451 452 453
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
454
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
455
                                main_program=None)
456 457
    """
    load_vars(
458 459 460
        executor,
        dirname=dirname,
        main_program=main_program,
461
        predicate=is_parameter,
462
        filename=filename)
463 464


465
def load_persistables(executor, dirname, main_program=None, filename=None):
466
    """
467 468
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
469 470
    `dirname` or the file `filename`.

471 472 473
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
474 475 476 477 478
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
479 480
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
481 482
                                    program will be used automatically.
                                    Default: None
483
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
484 485 486 487 488 489 490 491 492 493 494 495
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
496
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
497
                                       main_program=None)
498 499
    """
    load_vars(
500 501 502
        executor,
        dirname=dirname,
        main_program=main_program,
503
        predicate=is_persistable,
504
        filename=filename)
505 506


507 508
def get_inference_program(target_vars, main_program=None):
    if main_program is None:
Y
Yu Yang 已提交
509
        main_program = default_main_program()
510 511
    if not isinstance(target_vars, list):
        target_vars = [target_vars]
W
wanghaoshuang 已提交
512 513 514
    vars = []
    for var in target_vars:
        if isinstance(var, Evaluator):
W
wanghaoshuang 已提交
515 516
            vars.extend(var.states)
            vars.extend(var.metrics)
W
wanghaoshuang 已提交
517 518
        else:
            vars.append(var)
W
Wu Yi 已提交
519 520
    pruned_program = main_program._prune(targets=vars)
    inference_program = pruned_program._inference_optimize()
521 522 523
    return inference_program


524 525 526
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
527 528 529
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
530 531
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
532 533 534
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
535

536
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
537
        out = global_block.var(name)
W
Wu Yi 已提交
538
        global_block._prepend_op(
K
Kexin Zhao 已提交
539 540
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
541
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
542 543 544
            attrs={'col': i})


545 546 547
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
548 549
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
550 551 552
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
553

554
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
555 556 557 558 559 560 561
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


562 563 564 565
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
566
                         main_program=None,
567
                         model_filename=None,
568 569
                         params_filename=None,
                         export_for_deployment=True):
570
    """
F
fengjiayi 已提交
571 572 573 574 575
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
576
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
577
                                     during inference.
578
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
579 580
                                     results.
        executor(Executor): The executor that saves the inference model.
581 582
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
583 584
                                    the default main program will be used.
                                    Default: None.
585 586
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
587
                                  `__model__` will be used.
588 589
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
590
                                   in separate files .
X
Xin Pan 已提交
591 592 593 594 595
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
596

F
fengjiayi 已提交
597 598 599 600 601 602 603 604 605
    Returns:
        None

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
606

F
fengjiayi 已提交
607 608 609 610 611
            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

612 613 614
            # In this exsample, the function will prune the default main program
            # to make it suitable for infering the `predict_var`. The pruned
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
615
            # and parameters are going to be saved in separate files under folder
616
            # "./infer_model".
617 618

    """
M
minqiyang 已提交
619
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
620 621
        feeded_var_names = [feeded_var_names]
    else:
Q
Qiao Longfei 已提交
622
        if len(feeded_var_names) > 0:
623
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
624
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
625
                    isinstance(name, six.string_types)
626
                    for name in feeded_var_names)):
M
minqiyang 已提交
627
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
628 629

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
630
        target_vars = [target_vars]
F
fengjiayi 已提交
631 632 633 634 635
    else:
        if not (bool(target_vars) and all(
                isinstance(var, Variable) for var in target_vars)):
            raise ValueError("'target_vars' should be a list of Variable.")

636
    if main_program is None:
Y
Yu Yang 已提交
637
        main_program = default_main_program()
638
    copy_program = main_program.clone()
639 640 641 642

    if not os.path.isdir(dirname):
        os.makedirs(dirname)

X
Xin Pan 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
    if export_for_deployment:
        global_block = copy_program.global_block()
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
                global_block._remove_op(i)
        copy_program.desc.flush()

        pruned_program = copy_program._prune(targets=target_vars)
        saved_program = pruned_program._inference_optimize(prune_read_op=True)
        fetch_var_names = [v.name for v in target_vars]

        prepend_feed_ops(saved_program, feeded_var_names)
        append_fetch_ops(saved_program, fetch_var_names)
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
        saved_program = copy_program
665

666 667
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
668
    else:
669 670
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)
671

672 673 674 675
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)

    with open(model_filename, "wb") as f:
X
Xin Pan 已提交
676
        f.write(saved_program.desc.serialize_to_string())
677

X
Xin Pan 已提交
678
    save_persistables(executor, dirname, saved_program, params_filename)
679

T
tangwei12 已提交
680
    # if there is lookup table, the trainer 0 will notify all pserver to save.
T
tangwei12 已提交
681 682 683 684 685
    if main_program._is_distributed and main_program._is_chief and main_program._distributed_lookup_table:
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        _save_lookup_tables_by_notify(executor, lookup_table_filename,
                                      main_program._distributed_lookup_table,
                                      main_program._endpoints)
T
tangwei12 已提交
686

687

688 689 690
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
691 692
                         params_filename=None,
                         pserver_endpoints=None):
693 694 695
    """
    Load inference model from a directory

F
fengjiayi 已提交
696 697 698 699
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
700
                                  If it is None, the default filename
F
fengjiayi 已提交
701 702 703
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
704 705 706
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
707
                                   files, set it as 'None'.
708 709 710 711
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
712 713 714

    Returns:
        tuple: The return of this function is a tuple with three elements:
715 716 717 718 719
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
720 721 722 723 724 725 726 727 728 729
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
730
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
731
            [inference_program, feed_target_names, fetch_targets] =
F
fengjiayi 已提交
732 733 734 735 736
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

737 738 739
            # if we need lookup table, we will use:
            fluid.io.load_inference_model(dirname=path, executor=exe, pserver_endpoints=endpoints)

740 741 742 743 744
            # In this exsample, the inference program was saved in the
            # "./infer_model/__model__" and parameters were saved in
            # separate files in ""./infer_model".
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
745
            # program to get the inference result.
746

747 748 749 750
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

751 752
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
753
    else:
754 755 756 757 758
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
759

760
    with open(model_filename, "rb") as f:
761 762
        program_desc_str = f.read()

763
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
764
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
765 766 767
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
768
    load_persistables(executor, dirname, program, params_filename)
769

T
tangwei12 已提交
770
    if pserver_endpoints:
T
tangwei12 已提交
771
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
772

773 774
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
775 776 777 778 779
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
780 781


T
tangwei12 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
def _save_lookup_tables_by_notify(executor, dirname, lookup_table,
                                  pserver_endpoints):
    """
    This function will send checkpoint notify message from Trainer 0
    to all the pservers.
    The checkpoint notify message contains lookup table name,
    the absolute path on pserver to save lookup_table.

    Args:
        executor(Executor): The executor to run for send checkpoint notify.
        dirname(str): The folder where to save.
        lookup_table(string): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name
        ps_endpoint_list(list): the parameter server ip:port list.
            when use distribute lookup table, we can get ps_endpoint_list by
            distribute arguments.
    Return:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

            _save_pserver_vars_by_notify(executor=exe,
                    dirname=param_path, lookup_table=table_name,
                    pserver_endpoints=ps_endpoints)
    """

    pserver_notify_program = Program()
    pserver_notify_block = pserver_notify_program.global_block()

    attrs = {}
T
bug fix  
tangwei12 已提交
819
    attrs['epmap'] = pserver_endpoints
T
tangwei12 已提交
820 821 822 823 824 825 826 827 828 829 830
    attrs['dir'] = dirname
    attrs['lookup_table'] = lookup_table

    pserver_notify_block.append_op(
        type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
    executor.run(pserver_notify_program)


def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
831 832
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
833
    program._sync_with_cpp()
T
tangwei12 已提交
834
    return program
T
tangwei12 已提交
835 836


X
xuwei06 已提交
837 838
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
839 840 841 842 843 844 845 846 847 848 849
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
850

F
fengjiayi 已提交
851 852
    Examples:
        .. code-block:: python
X
xuwei06 已提交
853

F
fengjiayi 已提交
854 855 856
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
857

X
xuwei06 已提交
858
    """
X
xuwei06 已提交
859 860
    assert is_parameter(para)

X
xuwei06 已提交
861 862 863 864 865 866 867 868
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
869
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
870

F
fengjiayi 已提交
871 872 873 874 875 876 877
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
878

F
fengjiayi 已提交
879 880
    Returns:
        numpy.array: The parameter's values.
881

F
fengjiayi 已提交
882 883 884 885 886
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
887

F
fengjiayi 已提交
888 889 890 891 892
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
893 894
    """
    if program is None:
Y
Yu Yang 已提交
895
        program = default_main_program()
X
xuwei06 已提交
896 897
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
T
tangwei12 已提交
898 899


T
tangwei12 已提交
900 901
def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs):
    if not slice_vars_and_attrs:
902 903 904 905 906
        return

    load_prog = Program()
    load_block = load_prog.global_block()

T
tangwei12 已提交
907
    for var_tuple in slice_vars_and_attrs:
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
        orig_var = var_tuple[0]
        start = var_tuple[1]
        slice_var = var_tuple[2]
        end = start + reduce(lambda x, y: x * y, slice_var.shape)

        clone_orig_var = load_block.create_var(
            name=orig_var.name,
            type=orig_var.type,
            shape=orig_var.shape,
            dtype=orig_var.dtype,
            persistable=True)

        clone_slice_var = load_block.create_var(
            name=slice_var.name,
            type=slice_var.type,
            shape=slice_var.shape,
            dtype=slice_var.dtype,
            persistable=True)

        load_block.append_op(
            type='load',
            inputs={},
            outputs={'Out': [clone_orig_var]},
            attrs={'file_path': os.path.join(dirname, clone_orig_var.name)})
        load_block.append_op(
            type="slice",
            inputs={'Input': clone_orig_var},
            outputs={'Out': clone_slice_var},
            attrs={'axes': [0],
                   'starts': [start],
                   'ends': [end]})

    executor.run(load_prog)