Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
56008aa1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
56008aa1
编写于
5月 19, 2021
作者:
J
Jacek Czaja
提交者:
GitHub
5月 19, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[oneDNN] Pool softmax and LRN access to cache optimized (#32922)
上级
af89a943
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
175 addition
and
120 deletion
+175
-120
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
+102
-31
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
+19
-5
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
+7
-5
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+45
-79
python/paddle/fluid/tests/unittests/mkldnn/test_lrn_mkldnn_op.py
...paddle/fluid/tests/unittests/mkldnn/test_lrn_mkldnn_op.py
+2
-0
未找到文件。
paddle/fluid/operators/mkldnn/lrn_mkldnn_op.cc
浏览文件 @
56008aa1
...
...
@@ -14,21 +14,104 @@ limitations under the License. */
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace
paddle
{
namespace
framework
{
class
Tensor
;
}
// namespace framework
namespace
platform
{
class
MKLDNNDeviceContext
;
}
// namespace platform
}
// namespace paddle
namespace
paddle
{
namespace
operators
{
using
paddle
::
framework
::
Tensor
;
using
paddle
::
platform
::
MKLDNNDeviceContext
;
template
<
typename
T
>
class
LRNMKLDNNHandler
:
public
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
lrn_forward
,
mkldnn
::
lrn_backward
>
{
public:
LRNMKLDNNHandler
(
const
framework
::
ExecutionContext
&
ctx
,
const
MKLDNNDeviceContext
&
dev_ctx
,
const
mkldnn
::
engine
mkldnn_engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
input
,
const
std
::
string
&
unique_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
lrn_forward
,
mkldnn
::
lrn_backward
>
(
dev_ctx
,
mkldnn_engine
,
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
input
->
dims
()),
unique_name
))
{
if
(
!
this
->
isCachedNonBlocking
())
{
const
int
n
=
ctx
.
Attr
<
int
>
(
"n"
);
// MKL-DNN implements LRN in a caffe way:
// http://caffe.berkeleyvision.org/tutorial/layers/lrn.html
// Where sum of squares is divided by size of normalization window
// this is not the case for PaddlePaddle LRN.
// Hence we need to compensate for this diffrence by
// multipliing alpha by size of window(n)
const
float
alpha
=
ctx
.
Attr
<
float
>
(
"alpha"
)
*
static_cast
<
float
>
(
n
);
const
float
beta
=
ctx
.
Attr
<
float
>
(
"beta"
);
const
float
k
=
ctx
.
Attr
<
float
>
(
"k"
);
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
auto
dims
=
framework
::
vectorize
(
input
->
dims
());
auto
src_md
=
mkldnn
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
this
->
AcquireForwardPrimitiveDescriptorNonBlocking
(
is_test
?
mkldnn
::
prop_kind
::
forward_inference
:
mkldnn
::
prop_kind
::
forward_training
,
mkldnn
::
algorithm
::
lrn_across_channels
,
src_md
,
n
,
alpha
,
beta
,
k
);
}
}
LRNMKLDNNHandler
(
const
framework
::
ExecutionContext
&
ctx
,
const
MKLDNNDeviceContext
&
dev_ctx
,
platform
::
Place
cpu_place
,
const
Tensor
*
in_x
,
const
Tensor
*
out_grad
,
Tensor
*
in_x_grad
,
const
std
::
string
&
unique_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
lrn_forward
,
mkldnn
::
lrn_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
in_x
->
dims
()),
unique_name
))
{
if
(
!
this
->
isBwdCached
())
{
PADDLE_ENFORCE_EQ
(
ctx
.
Attr
<
bool
>
(
"is_test"
),
false
,
platform
::
errors
::
PreconditionNotMet
(
"is_test attribute should be set to False in training phase."
));
const
int
n
=
ctx
.
Attr
<
int
>
(
"n"
);
const
float
alpha
=
ctx
.
Attr
<
float
>
(
"alpha"
)
*
static_cast
<
float
>
(
n
);
const
float
beta
=
ctx
.
Attr
<
float
>
(
"beta"
);
const
float
k
=
ctx
.
Attr
<
float
>
(
"k"
);
auto
dims
=
framework
::
vectorize
<
int64_t
>
(
in_x
->
dims
());
auto
src_md
=
mkldnn
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
in_x
->
format
());
auto
diff_md
=
mkldnn
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out_grad
->
format
());
this
->
AcquireForwardPrimitiveDescriptorNonBlocking
(
mkldnn
::
prop_kind
::
forward_training
,
mkldnn
::
algorithm
::
lrn_across_channels
,
src_md
,
n
,
alpha
,
beta
,
k
);
this
->
AcquireBackwardPrimitiveDescriptorNonBlocking
(
mkldnn
::
algorithm
::
lrn_across_channels
,
src_md
,
diff_md
,
n
,
alpha
,
beta
,
k
);
}
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWorkspaceMemory
(
Tensor
*
workspace
)
{
T
*
ptr
=
workspace
->
mutable_data
<
T
>
(
this
->
place_
,
this
->
fwd_pd_
->
workspace_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
workspace_desc
(),
ptr
,
"@wrk_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireBackwardWorkspaceMemory
(
const
Tensor
*
workspace
)
{
const
T
*
workspace_data
=
workspace
->
data
<
T
>
();
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
workspace_desc
(),
platform
::
to_void_cast
<
T
>
(
workspace_data
),
"@bwd-wrk_mem_p"
);
}
};
template
<
typename
T
>
class
LRNMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -48,8 +131,8 @@ class LRNMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
mid
=
ctx
.
Output
<
Tensor
>
(
"MidOut"
);
platform
::
LRNMKLDNNHandler
<
T
>
handler
(
ctx
,
dev_ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
x
,
ctx
.
OutputName
(
"Out"
));
LRNMKLDNNHandler
<
T
>
handler
(
ctx
,
dev_ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
x
,
ctx
.
OutputName
(
"Out"
));
auto
src_memory
=
handler
.
AcquireSrcMemory
(
x
);
auto
dst_memory
=
handler
.
AcquireDstMemory
(
out
);
...
...
@@ -87,34 +170,22 @@ class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
true
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Operator DNNL LRNGrad must use CPUPlace"
));
PADDLE_ENFORCE_EQ
(
ctx
.
Attr
<
bool
>
(
"is_test"
),
false
,
platform
::
errors
::
PreconditionNotMet
(
"is_test attribute should be set to False in training phase."
));
auto
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
in_
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
mid
=
ctx
.
Input
<
Tensor
>
(
"MidOut"
);
auto
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
int
n
=
ctx
.
Attr
<
int
>
(
"n"
);
const
float
alpha
=
ctx
.
Attr
<
float
>
(
"alpha"
)
*
static_cast
<
float
>
(
n
);
const
float
beta
=
ctx
.
Attr
<
float
>
(
"beta"
);
const
float
k
=
ctx
.
Attr
<
float
>
(
"k"
);
auto
in_x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
auto
dims
=
paddle
::
framework
::
vectorize
<
int64_t
>
(
x
->
dims
());
LRNMKLDNNHandler
<
T
>
handler
(
ctx
,
dev_ctx
,
ctx
.
GetPlace
(),
in_x
,
out_grad
,
in_x_grad
,
ctx
.
InputName
(
"Out"
));
platform
::
LRNMKLDNNHandler
<
T
>
handler
(
dims
,
n
,
alpha
,
beta
,
k
,
x
->
format
(),
out_grad
->
format
(),
dev_ctx
,
ctx
.
GetPlace
(),
ctx
.
InputName
(
"Out"
));
auto
src_memory
=
handler
.
AcquireSrcMemory
(
x
);
auto
src_memory
=
handler
.
AcquireSrcMemory
(
in_x
);
auto
workspace
=
handler
.
AcquireBackwardWorkspaceMemory
(
mid
);
auto
diff_dst_memory
=
handler
.
AcquireDiffDstMemory
(
out_grad
);
auto
diff_src_memory
=
handler
.
AcquireDiffSrcMemory
(
x_grad
);
auto
diff_src_memory
=
handler
.
AcquireDiffSrcMemory
(
in_
x_grad
);
auto
lrn_bwd
=
handler
.
AcquireBackwardPrimitive
();
...
...
@@ -125,8 +196,8 @@ class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
{
MKLDNN_ARG_WORKSPACE
,
*
workspace
}});
astream
.
wait
();
x_grad
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
x_grad
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
diff_src_memory
));
in_
x_grad
->
set_layout
(
framework
::
DataLayout
::
kMKLDNN
);
in_
x_grad
->
set_format
(
platform
::
GetMKLDNNFormat
(
*
diff_src_memory
));
}
};
}
// namespace operators
...
...
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
浏览文件 @
56008aa1
...
...
@@ -43,7 +43,7 @@ class PoolingMKLDNNHandler
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
input
->
dims
()),
framework
::
ToMKLDNNDataType
(
input
->
type
()),
unique_name
))
{
if
(
!
this
->
isCached
())
{
if
(
!
this
->
isCached
NonBlocking
())
{
PADDLE_ENFORCE_EQ
(
input
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input tensor."
));
...
...
@@ -100,11 +100,10 @@ class PoolingMKLDNNHandler
const
auto
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
auto
dt
=
framework
::
ToMKLDNNDataType
(
input
->
type
());
const
auto
fmt
=
input
->
format
();
const
auto
exclude_padding
=
ctx
.
Attr
<
bool
>
(
"exclusive"
);
const
auto
src_md
=
mkldnn
::
memory
::
desc
(
src_tz
,
dt
,
fmt
);
const
auto
src_md
=
mkldnn
::
memory
::
desc
(
src_tz
,
dt
,
input
->
format
()
);
/* create memory descriptor for pooling without specified format
* ('any') which lets a primitive (pooling in this case) choose
* the memory format preferred for best performance
...
...
@@ -124,7 +123,7 @@ class PoolingMKLDNNHandler
ComputeAdaptivePoolParameters
(
ctx
,
src_tz
,
&
ksize
,
&
strides
);
this
->
AcquireForwardPrimitiveDescriptor
(
this
->
AcquireForwardPrimitiveDescriptor
NonBlocking
(
is_test
?
mkldnn
::
prop_kind
::
forward_inference
:
mkldnn
::
prop_kind
::
forward_training
,
pooling_type
==
"max"
...
...
@@ -200,6 +199,10 @@ class PoolingMKLDNNHandler
auto
diff_dst_tz
=
paddle
::
framework
::
vectorize
<
int64_t
>
(
out_grad
->
dims
());
const
auto
dt
=
framework
::
ToMKLDNNDataType
(
in_x
->
type
());
auto
src_md
=
mkldnn
::
memory
::
desc
(
src_tz
,
dt
,
in_x
->
format
());
auto
dst_md
=
mkldnn
::
memory
::
desc
(
diff_dst_tz
,
dt
,
MKLDNNMemoryFormat
::
any
);
auto
diff_dst_md
=
mkldnn
::
memory
::
desc
(
diff_dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out_grad
->
format
());
auto
diff_src_md
=
...
...
@@ -216,7 +219,18 @@ class PoolingMKLDNNHandler
ComputeAdaptivePoolParameters
(
ctx
,
diff_src_tz
,
&
ksize
,
&
strides
);
const
auto
exclude_padding
=
ctx
.
Attr
<
bool
>
(
"exclusive"
);
this
->
AcquireBackwardPrimitiveDescriptor
(
this
->
AcquireForwardPrimitiveDescriptorNonBlocking
(
mkldnn
::
prop_kind
::
forward_training
,
pooling_type
==
"max"
?
mkldnn
::
algorithm
::
pooling_max
:
(
exclude_padding
?
mkldnn
::
algorithm
::
pooling_avg_exclude_padding
:
mkldnn
::
algorithm
::
pooling_avg_include_padding
),
src_md
,
dst_md
,
strides
,
ksize
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
this
->
AcquireBackwardPrimitiveDescriptorNonBlocking
(
pooling_type
==
"max"
?
mkldnn
::
algorithm
::
pooling_max
:
(
exclude_padding
...
...
paddle/fluid/operators/mkldnn/softmax_mkldnn_op.cc
浏览文件 @
56008aa1
...
...
@@ -50,7 +50,7 @@ class SoftmaxMKLDNNHandler
:
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
input
->
dims
()),
uniq_name
))
{
if
(
!
this
->
isCached
())
{
if
(
!
this
->
isCached
NonBlocking
())
{
PADDLE_ENFORCE_EQ
(
input
->
dims
(),
output
->
dims
(),
platform
::
errors
::
InvalidArgument
(
...
...
@@ -60,8 +60,8 @@ class SoftmaxMKLDNNHandler
auto
md
=
memory
::
desc
(
softmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
prop_kind
::
forward_scoring
,
md
,
axis
);
this
->
AcquireForwardPrimitiveDescriptor
NonBlocking
(
prop_kind
::
forward_scoring
,
md
,
axis
);
}
}
...
...
@@ -90,8 +90,10 @@ class SoftmaxMKLDNNHandler
auto
diff_softmax_md
=
MKLDNNMemDesc
(
softmax_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out_grad
->
format
());
this
->
AcquireBackwardPrimitiveDescriptor
(
diff_softmax_md
,
data_softmax_md
,
axis
);
this
->
AcquireForwardPrimitiveDescriptorNonBlocking
(
prop_kind
::
forward_scoring
,
data_softmax_md
,
axis
);
this
->
AcquireBackwardPrimitiveDescriptorNonBlocking
(
diff_softmax_md
,
data_softmax_md
,
axis
);
}
}
};
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
56008aa1
...
...
@@ -126,13 +126,20 @@ class MKLDNNHandlerT {
return
(
dev_ctx_
.
GetBlob
(
key_p
)
!=
nullptr
);
}
bool
isCachedNonBlocking
()
{
const
std
::
string
key_pd
=
key_
+
"@fwd_pd"
;
fwd_pd_
=
std
::
static_pointer_cast
<
typename
TForward
::
primitive_desc
>
(
dev_ctx_
.
GetBlob
(
key_pd
));
return
(
fwd_pd_
!=
nullptr
);
}
bool
isBwdCached
()
{
const
std
::
string
key_pd
=
key_
common_
+
"@bwd_pd"
;
const
std
::
string
key_pd
=
key_
+
"@bwd_pd"
;
bwd_pd_
=
std
::
static_pointer_cast
<
typename
TBackward
::
primitive_desc
>
(
dev_ctx_
.
GetBlob
(
key_pd
));
const
std
::
string
key_p
=
key_
+
"@bwd_p"
;
return
(
dev_ctx_
.
GetBlob
(
key_p
)
!=
nullptr
);
return
(
bwd_pd_
!=
nullptr
);
}
// If your primitive descriptor requires attributes, pass them as a
...
...
@@ -161,6 +168,20 @@ class MKLDNNHandlerT {
}
}
template
<
typename
Arg
,
typename
...
Args
>
void
AcquireForwardPrimitiveDescriptorNonBlocking
(
Arg
&&
first_arg
,
Args
&&
...
args
)
{
// This is used when we can recreate FWD PD in BWD so
// we do not need to pass FWD to BWD
const
std
::
string
key_pd
=
key_
+
"@fwd_pd"
;
fwd_pd_
=
std
::
static_pointer_cast
<
typename
TForward
::
primitive_desc
>
(
dev_ctx_
.
GetBlob
(
key_pd
));
if
(
fwd_pd_
==
nullptr
)
{
CreateForwardPrimitiveDescriptor
(
first_arg
,
std
::
forward
<
Args
>
(
args
)...);
dev_ctx_
.
SetBlob
(
key_pd
,
fwd_pd_
);
}
}
// Using sfinae to specialise variadic function. Workaround for not having
// if constexpr in C++ 11.
template
<
class
First
,
class
...
Args
>
...
...
@@ -182,6 +203,8 @@ class MKLDNNHandlerT {
std
::
make_shared
<
typename
TForward
::
primitive_desc
>
(
fwd_desc
,
engine_
);
}
// TODO(jczaja): After/if all ops can used xxxNonBlocking version
// then remove this one
template
<
typename
...
Args
>
void
AcquireBackwardPrimitiveDescriptor
(
Args
&&
...
args
)
{
const
std
::
string
key_fwd_pd
=
key_common_
+
"@fwd_pd"
;
...
...
@@ -201,6 +224,25 @@ class MKLDNNHandlerT {
}
}
template
<
typename
...
Args
>
void
AcquireBackwardPrimitiveDescriptorNonBlocking
(
Args
&&
...
args
)
{
// fwd_pd_ is set during grad by calling
// AcquireForwardPrimitiveDescriptorNonBlocking
PADDLE_ENFORCE_NOT_NULL
(
fwd_pd_
,
platform
::
errors
::
Unavailable
(
"Get MKLDNN Forward primitive %s failed."
,
key_
+
"@fwd_pd"
));
const
std
::
string
key_pd
=
key_
+
"@bwd_pd"
;
bwd_pd_
=
std
::
static_pointer_cast
<
typename
TBackward
::
primitive_desc
>
(
dev_ctx_
.
GetBlob
(
key_pd
));
if
(
bwd_pd_
==
nullptr
)
{
auto
bwd_desc
=
typename
TBackward
::
desc
(
std
::
forward
<
Args
>
(
args
)...);
bwd_pd_
=
std
::
make_shared
<
typename
TBackward
::
primitive_desc
>
(
bwd_desc
,
engine_
,
*
fwd_pd_
);
dev_ctx_
.
SetBlob
(
key_pd
,
bwd_pd_
);
}
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireMemoryFromPrimitive
(
const
std
::
string
&
suffix
)
{
return
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
...
...
@@ -781,82 +823,6 @@ class ActivationMKLDNNHandler
}
};
template
<
typename
T
>
class
LRNMKLDNNHandler
:
public
MKLDNNHandlerT
<
T
,
mkldnn
::
lrn_forward
,
mkldnn
::
lrn_backward
>
{
public:
LRNMKLDNNHandler
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
const
mkldnn
::
engine
mkldnn_engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
input
,
const
std
::
string
&
unique_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
lrn_forward
,
mkldnn
::
lrn_backward
>
(
dev_ctx
,
mkldnn_engine
,
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
input
->
dims
()),
unique_name
))
{
if
(
!
this
->
isCached
())
{
const
int
n
=
ctx
.
Attr
<
int
>
(
"n"
);
// MKL-DNN implements LRN in a caffe way:
// http://caffe.berkeleyvision.org/tutorial/layers/lrn.html
// Where sum of squares is divided by size of normalization window
// this is not the case for PaddlePaddle LRN.
// Hence we need to compensate for this diffrence by
// multipliing alpha by size of window(n)
const
float
alpha
=
ctx
.
Attr
<
float
>
(
"alpha"
)
*
static_cast
<
float
>
(
n
);
const
float
beta
=
ctx
.
Attr
<
float
>
(
"beta"
);
const
float
k
=
ctx
.
Attr
<
float
>
(
"k"
);
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
auto
dims
=
paddle
::
framework
::
vectorize
(
input
->
dims
());
auto
src_md
=
mkldnn
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
input
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
is_test
?
mkldnn
::
prop_kind
::
forward_inference
:
mkldnn
::
prop_kind
::
forward_training
,
mkldnn
::
algorithm
::
lrn_across_channels
,
src_md
,
n
,
alpha
,
beta
,
k
);
}
}
LRNMKLDNNHandler
(
const
std
::
vector
<
int64_t
>&
dims
,
const
int
n
,
const
float
alpha
,
const
float
beta
,
const
float
k
,
const
MKLDNNMemoryFormat
fmt
,
const
MKLDNNMemoryFormat
diff_fmt
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
platform
::
Place
cpu_place
,
const
std
::
string
&
unique_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
lrn_forward
,
mkldnn
::
lrn_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
dims
,
unique_name
))
{
auto
src_md
=
mkldnn
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
fmt
);
auto
diff_md
=
mkldnn
::
memory
::
desc
(
dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
diff_fmt
);
this
->
AcquireBackwardPrimitiveDescriptor
(
mkldnn
::
algorithm
::
lrn_across_channels
,
src_md
,
diff_md
,
n
,
alpha
,
beta
,
k
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWorkspaceMemory
(
framework
::
Tensor
*
workspace
)
{
T
*
ptr
=
workspace
->
mutable_data
<
T
>
(
this
->
place_
,
this
->
fwd_pd_
->
workspace_desc
().
get_size
());
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
workspace_desc
(),
ptr
,
"@wrk_mem_p"
);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireBackwardWorkspaceMemory
(
const
framework
::
Tensor
*
workspace
)
{
const
T
*
workspace_data
=
workspace
->
data
<
T
>
();
return
this
->
AcquireMemoryFromPrimitive
(
this
->
fwd_pd_
->
workspace_desc
(),
to_void_cast
<
T
>
(
workspace_data
),
"@bwd-wrk_mem_p"
);
}
};
template
<
typename
T
>
class
TransposeMKLDNNHandler
:
public
MKLDNNHandler
{
public:
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_lrn_mkldnn_op.py
浏览文件 @
56008aa1
...
...
@@ -63,4 +63,6 @@ class TestLRNMKLDNNOpNHWC(TestLRNMKLDNNOp):
if
__name__
==
"__main__"
:
from
paddle
import
enable_static
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录