mkldnn_reuse.h 62.6 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

23
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
24
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
25
#include "paddle/fluid/framework/operator.h"
26
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
27 28 29 30 31 32
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

33 34
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
35
using user_function = std::function<std::shared_ptr<float>(const float*)>;
36
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
class MKLDNNHandlerNoCachingT {
 public:
  MKLDNNHandlerNoCachingT(mkldnn::engine engine, platform::Place cpu_place)
      : engine_(engine), place_(cpu_place), fwd_pd_(nullptr), bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }

  std::shared_ptr<TForward> AcquireForwardPrimitive() {
    return std::make_shared<TForward>(*fwd_pd_);
  }

  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
    return std::make_shared<TBackward>(*bwd_pd_);
  }

  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_, platform::errors::Unavailable("BWD_PD should be set when "
                                                 "getting BWD prim ."));
    return std::make_shared<TBackward_params>(*bwd_w_pd_);
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(fwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr);
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc());
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data));
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_dst_desc(),
                                            to_void_cast<T>(ptr));
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr);
  }

  // Buffer of given Tensor is used for oneDNN computation
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            ptr);
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc());
  }

 protected:
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
    CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
  }

  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
    bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  template <typename... Args>
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc =
        typename TBackward_params::desc(std::forward<Args>(args)...);
    bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, void* ptr) {
    return std::make_shared<mkldnn::memory>(md, engine_, ptr);
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md) {
    return std::make_shared<mkldnn::memory>(md, engine_);
  }

  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p) {
    auto reorder_p =
        std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    platform::RecordEvent record_reorder("int_reorder",
                                         platform::EventRole::kUniqueOp);
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  template <typename F = T>
  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
      const std::string& suffix, bool is_persistent = false,
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
    std::shared_ptr<mkldnn::memory> target_memory_p;
    if (custom_reorder_func) {
      auto reordered_data =
          custom_reorder_func(reinterpret_cast<const F*>(ptr));
      ptr = reinterpret_cast<void*>(reordered_data.get());
    }
    auto user_memory_p = std::make_shared<dnnl::memory>(user_md, engine_, ptr);
    if (user_md != target_md) {
      target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
      auto reorder_p =
          std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
    } else {
      target_memory_p = user_memory_p;
    }
    return target_memory_p;
  }

  mkldnn::engine engine_;
  platform::Place place_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
};

243
template <typename T, typename TForward,
244 245
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
246 247 248 249 250 251 252 253
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
254
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
255
        fwd_pd_(nullptr),
256 257 258
        bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
259

A
Adam 已提交
260
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
261
    const std::string key_p = key_ + "@fwd_p";
262 263 264
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
265
      forward_p = std::make_shared<TForward>(*fwd_pd_);
266 267 268 269 270
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
271
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
272
    const std::string key_p = key_ + "@bwd_p";
273 274 275
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
276
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
277 278 279 280 281
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

282 283 284 285 286 287
  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    const std::string key_p = key_ + "@bwd_w_p";
    auto backward_p =
        std::static_pointer_cast<TBackward_params>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_, platform::errors::Unavailable(
288
                                             "BWD_PD should be set when "
289 290 291 292 293 294 295 296
                                             "getting BWD prim witk key: %s .",
                                             key_p));
      backward_p = std::make_shared<TBackward_params>(*bwd_w_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

297 298 299
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
300 301
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
302 303
  }

304
  template <typename T_out = T>
305
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
306 307
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
A
Adam 已提交
308
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
309 310 311
                                            "@dst_mem_p");
  }

312 313 314 315 316
  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p");
  }

317
  template <typename T_out = T>
318 319
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
320 321 322 323
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
324 325 326 327 328
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
329 330
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
331 332 333 334
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
335 336 337 338
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
339 340
  }

341 342 343 344 345 346
  // Buffer of given Tensor is used for oneDNN computation
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
347
            "BWD_W_PD should be set when getting BWD grad of weights."));
348 349 350 351 352 353 354 355 356 357 358
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), ptr,
                                            "@diff_wei_mem_p");
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
359
            "BWD_W_PD should be set when getting BWD grad of weights."));
360 361 362 363
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            "@diff_wei_mem_p");
  }

364
 protected:
365
  bool isCached() {
366 367 368 369 370 371 372
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    return (fwd_pd_ != nullptr);
  }

373
  bool isBwdCached() {
374
    const std::string key_pd = key_ + "@bwd_pd";
375 376 377
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

378 379 380 381 382 383 384 385 386 387 388 389
    if (bwd_pd_ == nullptr) {
      return false;
    } else {
      // When BWD is cached then still we need to Get FWD PD
      const std::string key_fpd = key_ + "@fwd_pd";
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_fpd));
      PADDLE_ENFORCE_NOT_NULL(
          fwd_pd_, platform::errors::Unavailable(
                       "Error: FWD PD should be set when BWD PD is cached."));
      return true;
    }
390 391
  }

392 393 394 395 396 397
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
398 399 400 401 402 403 404 405 406 407 408
    // This is used when we can recreate FWD PD in BWD so
    // we do not need to pass FWD to BWD
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_pd, fwd_pd_);
    }
  }

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

430 431
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
432
    // fwd_pd_ is set during grad by calling
433
    // AcquireForwardPrimitiveDescriptor
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

449
  template <typename... Args>
450
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
451
    // fwd_pd_ is set during grad by calling
452
    // AcquireForwardPrimitiveDescriptor
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_w_pd";
    bwd_w_pd_ =
        std::static_pointer_cast<typename TBackward_params::primitive_desc>(
            dev_ctx_.GetBlob(key_pd));
    if (bwd_w_pd_ == nullptr) {
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_w_pd_);
    }
  }

470 471 472 473 474 475
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      const std::string& suffix) {
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(key_ + suffix));
  }

476
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
477
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
478
    const auto local_key = key_ + suffix;
479 480 481
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
482
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
483 484 485 486 487 488 489
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

490 491 492 493 494 495 496 497 498 499 500 501
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

502 503 504 505 506 507 508 509 510 511 512 513 514 515
  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p,
                      const std::string& suffix) {
    const auto key_reorder_p = key_ + suffix + "reorder_p";

    auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
    }

516
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
517 518 519

    platform::RecordEvent record_reorder("int_reorder",
                                         platform::EventRole::kUniqueOp);
520 521 522 523 524
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

525
  template <typename F = T>
526 527 528
  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
529 530
      const std::string& suffix, bool is_persistent = false,
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
531 532 533 534 535 536 537 538
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
539 540 541 542 543 544
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
545 546 547 548 549 550 551 552
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
        auto reorder_p =
            std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

553
        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
554 555
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
556 557 558 559 560 561 562 563 564
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
565
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
566 567 568 569 570 571 572 573

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
574 575
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
576 577 578 579 580 581 582 583
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

584 585 586 587 588 589
  std::shared_ptr<mkldnn::memory> AcquireMemory(const std::string& suffix) {
    const auto local_key = key_ + suffix;
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(local_key));
  }

590 591 592 593
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_common_;
594
  std::string key_;
595 596
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
597
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
598 599 600
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
601 602 603 604
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
605 606
      : dev_ctx_(dev_ctx),
        engine_(engine),
607 608 609
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
J
Jacek Czaja 已提交
610 611 612 613 614 615 616 617 618 619 620

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
621
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
622
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
623
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
624 625
  }

A
Adam 已提交
626
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
627
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
628
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
629 630 631
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
632
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
J
Jacek Czaja 已提交
633 634 635 636
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
637
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
638 639 640 641 642 643 644
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

645 646 647 648 649 650 651 652 653 654 655 656
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

A
Adam 已提交
674
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
675 676 677 678 679 680 681
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

682
  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
683
      const std::vector<int64_t>& dims, const mkldnn::memory::data_type dtype,
684
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
685 686 687 688 689 690 691
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

A
Adam 已提交
692
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
693 694 695 696 697 698 699
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
717
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
718 719
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
A
Adam 已提交
720 721 722
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
J
Jacek Czaja 已提交
723 724 725 726 727 728
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
729 730
      mkldnn::memory::desc& md,       // NOLINT
      mkldnn::memory::desc& user_md,  // NOLINT
J
Jacek Czaja 已提交
731 732 733
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
734 735
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
736 737 738 739 740 741
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
A
Adam 已提交
742

743
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
744

J
Jacek Czaja 已提交
745 746
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
A
Adam 已提交
747 748 749
      if (md != user_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(md, engine_);
        std::shared_ptr<mkldnn::reorder::primitive_desc> reorder_pd;
750 751 752 753 754
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

A
Adam 已提交
755 756 757
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p, attri));
758
        } else {
A
Adam 已提交
759 760 761
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p));
762
        }
A
Adam 已提交
763 764
        auto reorder_p =
            std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd));
J
Jacek Czaja 已提交
765
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
766

767 768
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
A
Adam 已提交
769 770 771
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
772 773 774 775 776 777 778
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
779 780
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
A
Adam 已提交
781 782 783
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
784 785 786 787 788 789 790 791
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
792
  std::string key_;
J
Jacek Czaja 已提交
793 794
};

795
template <typename T>
796 797
class BinaryMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
798
 public:
799
  BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
800 801
                      const mkldnn::engine engine, platform::Place cpu_place,
                      const Tensor* x, const Tensor* y, Tensor* z,
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
                      float scale_x, float scale_y, float scale_z)
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "Wrong layout set for X tensor. Expected: %d (kMKLDNN), Actual: %d",
            DataLayout::kMKLDNN, x->layout()));
    PADDLE_ENFORCE_NE(x->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for X tensor : %d (undef)",
                          static_cast<unsigned int>(x->format())));

    PADDLE_ENFORCE_EQ(
        y->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument(
            "Wrong layout set for Y tensor. Expected: %d (kMKLDNN), Actual: %d",
            DataLayout::kMKLDNN, y->layout()));
    PADDLE_ENFORCE_NE(y->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Y tensor : %d (undef)",
                          static_cast<unsigned int>(y->format())));

    const auto src_x_tz = framework::vectorize(x->dims());
    const auto src_y_tz = framework::vectorize(y->dims());
    // if output tensor(z) is nullptr then we are computing into oneDNN
    // managed buffer
    auto rankdiff = x->dims().size() - y->dims().size();
    const auto dst_tz = (z == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz)
                                       : framework::vectorize(z->dims());

    auto src0_md = dnnl::memory::desc(
        src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
    auto src1_md = dnnl::memory::desc(
        src_y_tz, platform::MKLDNNGetDataType<T>(), y->format());
    if (rankdiff > 0) {  // Second input is of smaller rank than first
      std::vector<int64_t> dims1_ex(rankdiff, 1);
      dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                      src_y_tz.begin(), src_y_tz.end());
      src1_md = src1_md.reshape(dims1_ex);
    } else if (rankdiff < 0) {  // First input is of smaller than second
      std::vector<int64_t> dims0_ex(-rankdiff, 1);
      dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)),
                      src_x_tz.begin(), src_x_tz.end());
      src0_md = src0_md.reshape(dims0_ex);
846
    }
847 848 849 850 851 852
    const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                     MKLDNNMemoryFormat::any);

    auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z);
    this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md,
                                            dst_md);
853 854 855 856 857
  }

  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
858 859
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src1_desc(),
                                            to_void_cast<T>(input_data));
860
  }
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892

 private:
  static inline dnnl::primitive_attr CreateAttributes(dnnl::algorithm op,
                                                      float scale_x,
                                                      float scale_y,
                                                      float scale_z) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_z / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_z / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0,
                          {scale_0});
    attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0,
                          {scale_1});
    return attributes;
  }
893 894
};

895 896
template <typename T>
class BroadcastDataMKLDNNHandler
897
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
898 899 900
 public:
  BroadcastDataMKLDNNHandler(const dnnl::algorithm algo,
                             const mkldnn::engine engine,
901 902
                             platform::Place cpu_place, const Tensor* out,
                             const Tensor* x, float scale_x, float scale_y,
903
                             const std::vector<int64_t>& input_dims)
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for X tensor."));
    PADDLE_ENFORCE_NE(
        x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for X tensor."));

    const auto src0_tz = framework::vectorize(out->dims());

    const auto src0_md = dnnl::memory::desc(
        src0_tz, platform::MKLDNNGetDataType<T>(), out->format());
    const auto src1_md = dnnl::memory::desc(
        input_dims, platform::MKLDNNGetDataType<T>(), out->format());

    dnnl::primitive_attr attributes;
    attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
    attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y});

    this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md, src1_md,
                                            src0_md);
925 926
  }

927 928 929 930 931
  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
    T_out* ptr = output->mutable_data<T_out>(
        this->place_, this->fwd_pd_->dst_desc().get_size());
    memset(ptr, 0, this->fwd_pd_->dst_desc().get_size());
932
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
933 934 935
  }
};

936 937
template <typename T>
class ReductionMKLDNNHandler
938
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction> {
939 940
 public:
  ReductionMKLDNNHandler(const dnnl::algorithm algo, const float p,
941 942
                         const float eps, const mkldnn::engine engine,
                         platform::Place cpu_place, const Tensor* x,
943 944
                         const Tensor* y, std::vector<int64_t> y_tz,
                         const dnnl::primitive_attr& attr = NULL)
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction>(engine,
                                                              cpu_place) {
    PADDLE_ENFORCE_EQ(
        x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for X tensor."));
    PADDLE_ENFORCE_NE(
        x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for X tensor."));

    const auto x_tz = framework::vectorize(x->dims());

    const auto x_md =
        dnnl::memory::desc(x_tz, platform::MKLDNNGetDataType<T>(), x->format());
    const auto y_md =
        memory::desc(y_tz, platform::MKLDNNGetDataType<T>(), x->format());

961 962 963 964
    if (attr)
      this->AcquireForwardPrimitiveDescriptor(attr, algo, x_md, y_md, p, eps);
    else
      this->AcquireForwardPrimitiveDescriptor(algo, x_md, y_md, p, eps);
965 966 967
  }
};

968
template <typename T>
969
class ActivationMKLDNNHandler
970 971
    : public MKLDNNHandlerNoCachingT<T, mkldnn::eltwise_forward,
                                     mkldnn::eltwise_backward> {
972
 public:
973 974
  ActivationMKLDNNHandler(mkldnn::algorithm algorithm,
                          const framework::ExecutionContext& ctx,
975 976 977 978 979 980 981
                          const mkldnn::engine engine, Place cpu_place,
                          const framework::Tensor* in_x)
      : platform::MKLDNNHandlerNoCachingT<T, mkldnn::eltwise_forward,
                                          mkldnn::eltwise_backward>(engine,
                                                                    cpu_place) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;
982 983

    if (ctx.Type() == "scale") {
984 985
      bool bias_after_scale = ctx.Attr<bool>("bias_after_scale");
      auto* scale_tensor = ctx.Input<Tensor>("ScaleTensor");
986 987 988
      alpha = (scale_tensor == nullptr)
                  ? ctx.Attr<float>("scale")
                  : static_cast<float>(*(scale_tensor->data<T>()));
989 990 991 992 993
      beta = ctx.Attr<float>("bias");
      // if bias_after_scale == true
      //   out = scale*X + bias
      // else
      //   out = scale*(X + bias) = scale*X + scale*bias
994 995 996 997 998 999 1000 1001
      if (!bias_after_scale) {
        beta *= alpha;
      }
    } else if (ctx.Type() == "clip") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
1002 1003 1004 1005 1006 1007
    } else {
      // paddle uses beta but mkldnn uses alpha for swish
      if (algorithm == mkldnn::algorithm::eltwise_swish) {
        std::swap(alpha, beta);
      } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
        alpha = ctx.Attr<float>("threshold");
1008
      }
1009
    }
1010

1011 1012 1013 1014 1015
    PADDLE_ENFORCE(in_x->dims().size() >= 1 || in_x->dims().size() <= 6,
                   platform::errors::Unimplemented(
                       "Input dimension size can be 1, 2, 3, 4, "
                       "5, or 6, but now the dimension size is",
                       in_x->dims().size()));
1016

1017 1018 1019 1020
    auto src_tz = framework::vectorize<int64_t>(in_x->dims());
    auto src_fmt = src_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
    auto md =
        mkldnn::memory::desc(src_tz, platform::MKLDNNGetDataType<T>(), src_fmt);
1021

1022 1023
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, md, alpha, beta);
1024 1025 1026 1027
  }

  ActivationMKLDNNHandler(mkldnn::algorithm algorithm,
                          const framework::ExecutionContext& ctx,
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
                          const mkldnn::engine engine, Place cpu_place,
                          const framework::Tensor* in_x, const Tensor* out_grad)
      : platform::MKLDNNHandlerNoCachingT<T, mkldnn::eltwise_forward,
                                          mkldnn::eltwise_backward>(engine,
                                                                    cpu_place) {
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;

    // paddle uses beta but mkldnn uses alpha for swish
    if (algorithm == mkldnn::algorithm::eltwise_swish) {
      std::swap(alpha, beta);
    } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
      alpha = ctx.Attr<float>("threshold");
    }
1042

1043 1044 1045 1046 1047 1048 1049
    if (ctx.Type() == "clip_grad") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
    }

1050
    auto diff_dst_tz = framework::vectorize<int64_t>(out_grad->dims());
1051

1052 1053 1054 1055
    auto src_fmt =
        diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
    auto diff_fmt =
        diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : out_grad->format();
1056

1057 1058 1059 1060 1061
    auto dims = framework::vectorize(in_x->dims());
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), src_fmt);
1062

1063 1064 1065 1066
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, src_md, alpha, beta);
    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
1067
  }
1068

1069 1070 1071
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
1072
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
1073
                                            to_void_cast<T>(input_data));
1074 1075 1076
  }
};

1077
class ReorderMKLDNNHandler {
1078
 public:
A
Adam 已提交
1079
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
1080
                       framework::proto::VarType::Type vtype,
1081 1082
                       mkldnn::memory::data_type dtype, mkldnn::engine engine)
      : dims_(dims),
1083
        vtype_(vtype),
1084 1085
        vtype_dst_(vtype),
        dtype_(dtype),
1086 1087
        dtype_dst_(dtype),
        engine_(engine) {}
1088 1089 1090 1091 1092 1093

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       framework::proto::VarType::Type vtype_dst,
                       mkldnn::memory::data_type dtype_dst,
1094 1095
                       mkldnn::engine engine)
      : dims_(dims),
1096 1097 1098
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
1099 1100
        dtype_dst_(dtype_dst),
        engine_(engine) {}
1101 1102

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
1103
      const MKLDNNMemoryFormat& fmt, void* ptr) {
1104 1105
    auto md = mkldnn::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<mkldnn::memory>(md, engine_, ptr);
1106 1107
  }

1108
  std::shared_ptr<mkldnn::memory> AcquireSubmemory(
1109
      const std::vector<int64_t>& dims, const std::vector<int64_t>& offset,
1110 1111 1112 1113
      const std::shared_ptr<mkldnn::memory>& mem_p) {
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
    auto sub_mem_p = std::make_shared<mkldnn::memory>(sub_md, engine_,
                                                      mem_p->get_data_handle());
1114 1115 1116
    return sub_mem_p;
  }

1117
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
1118
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
1119
      platform::Place place) {
1120 1121 1122
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
    auto dst_data = output->mutable_data(place, vtype_dst_, dst_md.get_size());
    return std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
1123 1124
  }

1125 1126
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      framework::Tensor* output, const std::vector<int64_t>& dims,
1127 1128 1129 1130
      const MKLDNNMemoryFormat& fmt, platform::Place place) {
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
    auto dst_data = output->mutable_data(place, vtype_dst_, dst_md.get_size());
    return std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
1131 1132
  }

1133 1134 1135
  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
1136
    return std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
1137 1138 1139
  }

 private:
A
Adam 已提交
1140
  std::vector<int64_t> dims_;
1141 1142
  framework::proto::VarType::Type vtype_, vtype_dst_;
  mkldnn::memory::data_type dtype_, dtype_dst_;
1143
  mkldnn::engine engine_;
1144 1145
};

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
1160 1161 1162
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
1163 1164 1165 1166
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

1167 1168 1169 1170 1171 1172 1173 1174 1175
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

A
Adam 已提交
1193
  size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); }
J
Jacek Czaja 已提交
1194

1195
  MKLDNNMemoryFormat GetDstFormat() const {
A
Adam 已提交
1196
    return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc());
J
Jacek Czaja 已提交
1197 1198 1199
  }

  size_t GetDiffWeightsMemorySize() const {
A
Adam 已提交
1200
    return conv_bwd_weights_pd_->diff_weights_desc().get_size();
J
Jacek Czaja 已提交
1201 1202 1203
  }

  size_t GetDiffSourceMemorySize() const {
A
Adam 已提交
1204
    return conv_bwd_data_pd_->diff_src_desc().get_size();
J
Jacek Czaja 已提交
1205 1206 1207 1208 1209
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1210 1211
    auto src_pd = conv_bwd_weights_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1212 1213 1214 1215 1216 1217 1218
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1219 1220
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1221 1222 1223 1224 1225 1226 1227
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
A
Adam 已提交
1228
        conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p");
J
Jacek Czaja 已提交
1229 1230
  }

1231 1232 1233 1234 1235 1236
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_desc(), "@diff_weights_mem_p");
  }

J
Jacek Czaja 已提交
1237 1238 1239
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1240 1241
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1242 1243 1244 1245 1246 1247 1248
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1249 1250
    auto weights_pd = conv_bwd_data_pd_->weights_desc();
    auto user_pd = user_weights_memory_p->get_desc();
J
Jacek Czaja 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
A
Adam 已提交
1271 1272
    return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(),
                                            ptr, "@diff_src_mem_p");
J
Jacek Czaja 已提交
1273 1274 1275
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
1276
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr,
J
Jacek Czaja 已提交
1277 1278 1279 1280 1281 1282
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1283 1284
    auto src_pd = conv_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1285 1286 1287 1288
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
1300 1301 1302
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
1303 1304
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
A
Adam 已提交
1305 1306
    auto user_weights_pd = user_weights_memory_p->get_desc();
    auto weights_pd = conv_pd_->weights_desc();
1307 1308 1309
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
1310 1311 1312 1313
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
1314 1315 1316 1317
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
A
Adam 已提交
1318 1319
    auto user_bias_pd = user_bias_memory_p->get_desc();
    auto bias_pd = conv_pd_->bias_desc();
J
Jacek Czaja 已提交
1320
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
1321 1322
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
1323 1324
  }

1325
  mkldnn::primitive_attr CreatePostOps(
1326 1327
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
1328
      float sum_scale = 1.0f) const {
1329 1330
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
1331 1332 1333 1334
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
1335 1336 1337 1338 1339 1340
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
1341
      post_operations.append_sum(sum_scale);
1342 1343 1344
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
1345
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
1346 1347
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
1348
                                     fuse_alpha, fuse_beta);
1349
    } else if (fuse_activation == "relu6") {
1350 1351 1352
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
1353
                                     fuse_alpha, fuse_beta);
1354 1355 1356 1357
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
1358
    }
1359 1360 1361 1362 1363 1364 1365
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
1366
      paddle::optional<const mkldnn::memory::desc&> bias,
A
Adam 已提交
1367
      const mkldnn::memory::desc& dst, const std::vector<int64_t>& strides,
1368
      const std::vector<int64_t>& dilations,
A
Adam 已提交
1369
      const std::vector<int64_t>& paddings, const mkldnn::engine& engine,
1370 1371
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1372 1373
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1374 1375 1376
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
1377
    const std::string key_conv_pd = key_ + "@conv_pd";
1378

1379
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1380 1381
        dev_ctx_.GetBlob(key_conv_pd));

1382
    if (conv_pd_ == nullptr) {
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
      mkldnn::memory::dims stride_dims = strides;
      mkldnn::memory::dims dilations_dims = dilations;
      auto mkldnn_paddings = ToMkldnnPadding(paddings);

      auto conv_desc =
          bias ? typename forward_t::desc(
                     fwd_prop_kind, convolutional_algorithm<forward_t>::T, src,
                     weights, *bias, dst, stride_dims, dilations_dims,
                     mkldnn_paddings[0], mkldnn_paddings[1])
               : typename forward_t::desc(
                     fwd_prop_kind, convolutional_algorithm<forward_t>::T, src,
                     weights, dst, stride_dims, dilations_dims,
                     mkldnn_paddings[0], mkldnn_paddings[1]);

      mkldnn::primitive_attr conv_attr =
          CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                        fuse_residual_conn, output_shift_scale, sum_scale);

      conv_pd_.reset(
          new typename forward_t::primitive_desc(conv_desc, conv_attr, engine));
      // Save conv_pd/src_memory/weights_memory for backward pass
      dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
1405 1406 1407 1408 1409
    }

    return conv_pd_;
  }

A
Adam 已提交
1410
  std::shared_ptr<forward_t> AcquireConvolution() {
J
Jacek Czaja 已提交
1411 1412 1413 1414
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
A
Adam 已提交
1415
      conv_p = std::make_shared<forward_t>(*conv_pd_);
J
Jacek Czaja 已提交
1416 1417 1418 1419 1420 1421

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

A
Adam 已提交
1422
  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights() {
J
Jacek Czaja 已提交
1423 1424 1425 1426 1427
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
A
Adam 已提交
1428 1429
      conv_bwd_weights_p =
          std::make_shared<backward_weights_t>(*conv_bwd_weights_pd_);
J
Jacek Czaja 已提交
1430 1431 1432 1433 1434
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

A
Adam 已提交
1435
  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData() {
J
Jacek Czaja 已提交
1436 1437 1438 1439
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
A
Adam 已提交
1440
      conv_bwd_data_p = std::make_shared<backward_data_t>(*conv_bwd_data_pd_);
J
Jacek Czaja 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
1477 1478 1479 1480
  PADDLE_ENFORCE_NOT_NULL(
      residual_param_data,
      platform::errors::PreconditionNotMet("Residual parameter is required for "
                                           "the DNNL conv+elementwise_add "
G
GaoWei8 已提交
1481
                                           "fusion, but now it is missing."));
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1502 1503 1504
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
1505 1506
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
1507 1508
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
1509 1510
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1511
  MKLDNNMemoryFormat dst_fmt;
1512

G
GaoWei8 已提交
1513 1514 1515 1516
  PADDLE_ENFORCE_LE(dst_dims, 5, platform::errors::InvalidArgument(
                                     "Dst memory for quantization can not have "
                                     "dims > 5. But received dst_dims is %d.",
                                     dst_dims));
1517
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1518

A
Adam 已提交
1519
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1520
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1521
                    framework::DataTypeTrait<T>::DataType()),
1522
      dst_fmt);
A
Adam 已提交
1523 1524 1525
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1526
}
J
Jacek Czaja 已提交
1527 1528
}  // namespace platform
}  // namespace paddle