dist_embedding.py 26.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15 16 17
from paddle.distributed.auto_parallel.cost.comm_op_cost import (
    AllreduceSumOpCost,
    IdentityOpCost,
18
)
19
from paddle.distributed.fleet.meta_optimizers.common import OP_ROLE_KEY, OpRole
20
from paddle.fluid.data_feeder import check_dtype, check_variable_and_dtype
21 22
from paddle.framework import core
from paddle.utils import unique_name
23 24 25 26 27 28 29 30 31 32

from ..cost import (
    EmbeddingGradOpCost,
    EmbeddingOpCost,
    build_comm_costs_from_descs,
    build_comm_desc_from_dist_op,
    build_comp_costs_from_descs,
    build_comp_desc_from_dist_op,
    build_dp_costs,
)
33
from ..dist_attribute import OperatorDistAttr
34
from ..process_group import new_process_group
35 36 37
from ..utils import (
    _get_comm_group,
    _get_corresponding_rank,
38 39 40 41
    _get_idx_in_axis,
    compute_compatible_and_update_dim_mapping,
    is_dim_replicate,
    is_dim_shard,
42 43
    set_var_dist_attr,
)
44 45 46 47 48 49 50 51 52
from .common import (
    DistributedOperatorImpl,
    DistributedOperatorImplContainer,
    gradient_synchronization,
    infer_shape,
    naive_copy_op_dist_attr_for_program,
    register_distributed_operator_impl,
    register_distributed_operator_impl_container,
    set_comm_op_dist_attr_for_program,
53
)
54 55


56
class DistributedEmbedding(DistributedOperatorImplContainer):
57
    def __init__(self, op_type):
58
        super().__init__(op_type)
59 60


61
register_distributed_operator_impl_container(
62 63
    DistributedEmbedding("lookup_table_v2")
)
64
register_distributed_operator_impl_container(
65 66
    DistributedEmbedding("c_embedding")
)
67
register_distributed_operator_impl_container(
68 69
    DistributedEmbedding("lookup_table")
)
70 71 72 73


def adopt_lookup_table_v1(ctx, main_block, src_op, Ids_var):

74 75 76 77 78
    assert (
        len(Ids_var.shape) == 3
    ), "input Ids to lookup_table should have 3 dimensions but got [{}] with shape [{}]".format(
        Ids_var.name, Ids_var.shape
    )
79 80 81 82 83 84 85
    if not Ids_var.stop_gradient:
        raise NotImplementedError(
            'Requiring the gradient of Ids of lookup_table(v1)dist op is not currently supported. Please open an issue with details on your use case so that we can prioritize adding this (for instance, adversarial training for language model).'
        )

    target_shape = list(Ids_var.shape[:-1])
    intermediate_var_0 = main_block.create_var(
86 87 88
        name=unique_name.generate_with_ignorable_key(
            ".".join(["dist_reshape", 'tmp'])
        ),
89 90 91 92
        dtype=Ids_var.dtype,
        shape=target_shape,
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
93 94
        stop_gradient=True,
    )
95 96 97

    target_shape = [0] + list(Ids_var.shape[:-1])
    xshape_var = main_block.create_var(
98 99 100
        name=unique_name.generate_with_ignorable_key(
            ".".join(["dist_Xshape", 'tmp'])
        ),
101 102 103 104
        dtype=Ids_var.dtype,
        shape=target_shape,
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
105 106
        stop_gradient=True,
    )
107 108

    # TODO use inplace reshape for memory saving
109 110 111 112 113 114 115 116
    reshape_op = main_block.append_op(
        type='reshape2',
        inputs={'X': [Ids_var]},
        outputs={'Out': [intermediate_var_0], 'XShape': [xshape_var]},
        attrs={
            "shape": [0, -1],
        },
    )
117 118 119 120 121 122

    # set dist attr
    op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
    Ids_var_dist_attr = op_dist_attr.get_input_dist_attr(Ids_var.name)
    assert Ids_var_dist_attr is not None
    intermediate_var_0_dist_attr = set_var_dist_attr(
123 124 125 126 127 128 129 130 131 132 133
        ctx,
        intermediate_var_0,
        Ids_var_dist_attr.dims_mapping,
        Ids_var_dist_attr.process_mesh,
    )
    set_var_dist_attr(
        ctx,
        xshape_var,
        [-1] + list(Ids_var_dist_attr.dims_mapping),
        Ids_var_dist_attr.process_mesh,
    )
134
    op_dist_attr.del_input_dist_attr(Ids_var.name)
135 136 137
    op_dist_attr.set_input_dist_attr(
        intermediate_var_0.name, intermediate_var_0_dist_attr
    )
138

139
    new_op_dist_attr = OperatorDistAttr()
140 141 142
    new_op_dist_attr.process_mesh = Ids_var_dist_attr.process_mesh
    new_op_dist_attr.impl_type = "default"
    new_op_dist_attr.impl_idx = 0
143 144 145 146 147 148
    new_op_dist_attr.set_input_dims_mapping(
        Ids_var.name, Ids_var_dist_attr.dims_mapping
    )
    new_op_dist_attr.set_output_dims_mapping(
        intermediate_var_0.name, Ids_var_dist_attr.dims_mapping
    )
149
    new_op_dist_attr.set_output_dims_mapping(
150 151
        xshape_var.name, [-1] + list(Ids_var_dist_attr.dims_mapping)
    )
152 153 154
    ctx.set_op_dist_attr_for_program(reshape_op, new_op_dist_attr)

    return intermediate_var_0
155 156 157 158 159


# RowParallel
class DistributedEmbeddingImpl(DistributedOperatorImpl):
    def __init__(self, name):
160
        super().__init__(name)
161
        self._forward_implemented = True
162
        self._backward_implemented = True
163

C
caozhou 已提交
164 165 166 167 168 169 170 171 172 173 174 175
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        """Calculate the cost by the op role."""
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
176 177 178
        desc_mapping = build_comp_desc_from_dist_op(
            dist_op=dist_op, dist_context=ctx
        )
179
        processes = dist_op.dist_attr.process_mesh.process_ids
C
caozhou 已提交
180
        # embedding need start_index
181 182 183
        cost_mapping = build_comp_costs_from_descs(
            EmbeddingOpCost, ctx, processes, desc_mapping, cluster
        )
C
caozhou 已提交
184 185 186

        serial_op = dist_op.serial_op
        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
187 188
            serial_op.input("W")[0]
        )[0]
C
caozhou 已提交
189 190 191 192 193 194 195 196
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = serial_op.output("Out")
        c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
            "c_allreduce_sum",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
197 198
            parallel_axis=parallel_axis,
        )
C
caozhou 已提交
199 200

        comm_op_cost_list = build_comm_costs_from_descs(
201 202 203 204 205 206
            AllreduceSumOpCost,
            ctx,
            processes,
            c_allreduce_sum_desc_mapping,
            cluster,
        )
C
caozhou 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219

        res_cost = [cost_mapping, comm_op_cost_list]

        return res_cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        main_block = backward_op.block
        dist_attr = dist_op.dist_attr

        embedding_row_dim_mapping = dist_attr.get_input_dims_mapping(
220 221
            backward_op.input("W")[0]
        )[0]
C
caozhou 已提交
222 223 224 225 226 227 228 229 230
        parallel_axis = embedding_row_dim_mapping
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = [backward_op.input("Out@GRAD")[0]]
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
231 232
            parallel_axis=parallel_axis,
        )
C
caozhou 已提交
233 234

        process_mesh = dist_attr.process_mesh
235
        processes = process_mesh.process_ids
C
caozhou 已提交
236
        comm_op_cost_list = build_comm_costs_from_descs(
237 238
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster
        )
C
caozhou 已提交
239 240 241
        res.append(comm_op_cost_list)

        # calc comp op cost
242 243 244 245 246 247
        desc_mapping = build_comp_desc_from_dist_op(
            dist_op=dist_op, dist_context=ctx
        )
        cost_mapping = build_comp_costs_from_descs(
            EmbeddingGradOpCost, ctx, processes, desc_mapping, cluster
        )
C
caozhou 已提交
248 249 250 251
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
252 253
            backward_op.input("Ids")[0]
        )
254
        mesh_shape = process_mesh.shape
C
caozhou 已提交
255 256 257 258 259
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('W@GRAD')[0]]
260 261 262
            build_dp_costs(
                res, dist_op, ctx, var_names, attrs, parallel_axis, cluster
            )
C
caozhou 已提交
263 264 265

        return res

266 267 268
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
269 270 271 272
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
273
        if is_dim_replicate(w_dims_mapping[-2]) or is_dim_shard(
274 275
            w_dims_mapping[-1]
        ):
276 277 278 279 280 281 282
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in ids_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

283 284 285
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
286 287 288 289 290 291 292 293
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:]:
            if is_dim_shard(mapping):
                return False
        return True

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
294
    def is_auto_compatible(self, dist_op):
295 296 297
        if (not self.is_input_compatible(dist_op)) or (
            not self.is_output_compatible(dist_op)
        ):
298 299
            return False

沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
300 301 302 303 304 305 306 307
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
308

309
        if ids_dims_mapping != out_dims_mapping[: len(ids_dims_mapping)]:
沉潜的鱼儿's avatar
沉潜的鱼儿 已提交
310 311 312 313
            return False

        return True

314
    def update_dims_mapping(self, dist_op):
315
        changed = False
316 317
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
318 319 320 321 322 323 324 325 326
        ids_name = op_desc.input('Ids')[0]
        w_name = op_desc.input('W')[0]
        out_name = op_desc.output('Out')[0]
        ids_dims_mapping = op_dist_attr.get_input_dims_mapping(ids_name)
        w_dims_mapping = op_dist_attr.get_input_dims_mapping(w_name)
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        for i in range(len(ids_dims_mapping)):
            dim_changed = compute_compatible_and_update_dim_mapping(
327 328
                [ids_dims_mapping, out_dims_mapping], [i, i]
            )
329 330 331 332
            if dim_changed:
                changed = True

        dim_changed = compute_compatible_and_update_dim_mapping(
333 334
            [w_dims_mapping, out_dims_mapping], [-1, -1]
        )
335 336 337
        if dim_changed:
            changed = True

338 339 340 341 342
        if changed:
            op_dist_attr.set_input_dims_mapping(ids_name, ids_dims_mapping)
            op_dist_attr.set_input_dims_mapping(w_name, w_dims_mapping)
            op_dist_attr.set_output_dims_mapping(out_name, out_dims_mapping)

343 344
        return changed

345 346 347 348 349 350
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

351
        dist_op_context = ctx.dist_op_context
352 353 354 355
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
356
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
357 358 359
        assert (
            op_dist_attr is not None
        ), "backward op [{}] don't have dist attribute !".format(str(src_op))
360

361
        # check validation of inputs / outputs
362 363 364 365
        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out' in kwargs, "output [{}] is not given".format('Out')

366 367 368
        assert (
            len(kwargs['Ids']) == 1
        ), "row_parallel_embedding input Ids take 1 variable but got {}".format(
369
            kwargs['Ids']
370 371 372 373
        )
        assert (
            len(kwargs['W']) == 1
        ), "row_parallel_embedding input W take 1 variable but got {}".format(
374
            kwargs['W']
375 376 377 378
        )
        assert (
            len(kwargs['Out']) == 1
        ), "row_parallel_embedding output Out take 1 variable but got {}".format(
379
            kwargs['Out']
380
        )
381

Z
zhaoyingli 已提交
382
        Ids_var = main_block._var_recursive(kwargs['Ids'][0])
383
        Weight_var = main_block._var_recursive(kwargs['W'][0])
Z
zhaoyingli 已提交
384
        Out_var = main_block._var_recursive(kwargs['Out'][0])
385

386 387 388 389
        # support lookup_table_v1
        if src_op.type == 'lookup_table':
            Ids_var = adopt_lookup_table_v1(ctx, main_block, src_op, Ids_var)

390 391
        # got dist attribute info
        embedding_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
392 393 394 395 396 397 398
            Weight_var.name
        )[0]
        assert (
            embedding_row_dim_mapping >= 0
        ), "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping
        )
399 400
        process_mesh_shape = op_dist_attr.process_mesh.shape
        process_mesh_group = op_dist_attr.process_mesh.process_ids
401 402 403

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in process_mesh_group:
404 405 406
            rank_id = _get_corresponding_rank(
                ctx, op_dist_attr.process_mesh, rank_id
            )
407 408

        # A generalized method to caculate embedding offset using cartisian product
409 410 411 412 413 414
        relative_idx = _get_idx_in_axis(
            process_mesh_group,
            process_mesh_shape,
            embedding_row_dim_mapping,
            rank_id,
        )
415 416 417 418

        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

419
        # TODO caculate ring id
420
        parallel_axis = embedding_row_dim_mapping
421 422 423
        group_ranks = _get_comm_group(
            process_mesh_group, process_mesh_shape, parallel_axis, rank_id
        )
424 425 426
        group = new_process_group(group_ranks)

        # append op
427 428 429
        check_variable_and_dtype(
            Ids_var, 'input', ['int32', 'int64'], 'c_embedding'
        )
430

Z
zhaoyingli 已提交
431 432 433 434 435
        # infer new var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
436 437 438
        ref_shape = infer_shape(
            main_block, Out_var, out_tensor_dist_attr, out_var_dist_attr
        )
Z
zhaoyingli 已提交
439

440
        intermediate_var_0 = main_block.create_var(
441 442 443
            name=unique_name.generate_with_ignorable_key(
                ".".join(["c_embedding", 'tmp'])
            ),
444 445 446 447
            dtype=Weight_var.dtype,
            shape=Out_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
448 449
            stop_gradient=Out_var.stop_gradient,
        )
Z
zhaoyingli 已提交
450
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
451 452 453
        ctx.set_tensor_dist_attr_for_program(
            intermediate_var_0, out_var_dist_attr
        )
454 455

        check_variable_and_dtype(
456 457
            Out_var,
            'tensor',
458
            ['float16', 'float32', 'float64', 'int32', 'int64'],
459 460
            'c_allreduce_sum',
        )
461 462 463

        c_embedding_op = main_block.append_op(
            type='c_embedding',
464
            inputs={'Ids': [Ids_var], 'W': [Weight_var]},
465
            outputs={'Out': [intermediate_var_0]},
466 467
            attrs={
                "start_index": relative_idx,
468 469 470
                OP_ROLE_KEY: src_op.attr('op_role'),
            },
        )
Z
zhaoyingli 已提交
471 472
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
473 474 475 476 477 478 479 480 481 482

        # use_model_parallel
        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [intermediate_var_0]},
            outputs={'Out': [Out_var]},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
483 484 485
                OP_ROLE_KEY: src_op.attr('op_role'),
            },
        )
Z
zhaoyingli 已提交
486 487 488 489 490
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
491
        embedding_op_dist_attr = OperatorDistAttr()
Z
zhaoyingli 已提交
492
        embedding_op_dist_attr.process_mesh = op_dist_attr.process_mesh
493
        embedding_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
494 495 496 497
        embedding_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_embedding_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
498 499 500 501 502
                op_dist_attr
            )
            embedding_op_dist_attr.set_input_dist_attr(
                input_varname, input_dist_attr
            )
Z
zhaoyingli 已提交
503 504 505
        output_varname = c_embedding_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
506 507 508 509 510
            op_dist_attr
        )
        embedding_op_dist_attr.set_output_dist_attr(
            output_varname, output_dist_attr
        )
Z
zhaoyingli 已提交
511
        ctx.set_op_dist_attr_for_program(c_embedding_op, embedding_op_dist_attr)
512

Z
zhaoyingli 已提交
513
        # allreduce
514
        allreduce_op_dist_attr = OperatorDistAttr()
Z
zhaoyingli 已提交
515
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
516
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
517 518
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
Z
zhaoyingli 已提交
519
            input_var = main_block._var_recursive(input_varname)
Z
zhaoyingli 已提交
520 521
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
522 523 524
            allreduce_op_dist_attr.set_input_dist_attr(
                input_varname, tensor_dist_attr
            )
Z
zhaoyingli 已提交
525 526 527
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
528 529 530 531 532 533 534 535
                op_dist_attr
            )
            allreduce_op_dist_attr.set_output_dist_attr(
                output_varname, output_dist_attr
            )
        ctx.set_op_dist_attr_for_program(
            c_allreduce_sum_op, allreduce_op_dist_attr
        )
536 537

        # param initialization sync
538
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
539 540
            if Weight_var.name in dist_op_context.already_init_sync_vars:
                return
J
JZ-LIANG 已提交
541 542 543 544 545 546 547
            dist_op_context.already_init_sync_vars.add(Weight_var.name)
            param = startup_block.var(Weight_var.name)
            param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
            process_mesh = param_dist_attr.process_mesh
            dim_mapping = param_dist_attr.dims_mapping

            # NOTE all not splited axis should be presented in mesh
548
            for axis, size in enumerate(process_mesh.shape):
J
JZ-LIANG 已提交
549 550 551
                if size <= 1 or axis in dim_mapping:
                    pass
                else:
552
                    group_ranks = _get_comm_group(
553 554
                        process_mesh.process_ids,
                        process_mesh.shape,
555 556 557
                        axis,
                        rank_id,
                    )
J
JZ-LIANG 已提交
558 559
                    sync_group = new_process_group(group_ranks)

560 561 562 563 564 565 566 567 568 569 570
                    startup_block.append_op(
                        type='c_broadcast',
                        inputs={'X': param},
                        outputs={'Out': param},
                        attrs={
                            'ring_id': sync_group.id,
                            'root': 0,
                            'use_calc_stream': True,
                            OP_ROLE_KEY: OpRole.Forward,
                        },
                    )
571 572 573 574 575

    @staticmethod
    def backward(ctx, *args, **kwargs):

        # by now the backward function only insert the gradient allreduce for dist op itself
576
        dist_op_context = ctx.dist_op_context
577 578 579
        main_block = dist_op_context.work_block
        backward_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
580
        dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
581 582 583 584 585
        assert (
            dist_attr is not None
        ), "backward op [{}] don't have dist attribute !".format(
            str(backward_op)
        )
586

587
        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
588
        if rank_id not in dist_attr.process_mesh.process_ids:
589 590 591
            rank_id = _get_corresponding_rank(
                ctx, dist_attr.process_mesh, rank_id
            )
592 593 594 595 596 597

        assert 'Ids' in kwargs, "input [{}] is not given".format('Ids')
        assert 'W' in kwargs, "input [{}] is not given".format('W')
        assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out')
        assert 'W@GRAD' in kwargs, "output [{}] is not given".format('W@GRAD')

598 599 600
        assert (
            len(kwargs['Ids']) == 1
        ), "row_parallel_embedding input Ids take 1 variable but got {}".format(
601
            kwargs['Ids']
602 603 604 605
        )
        assert (
            len(kwargs['W']) == 1
        ), "row_parallel_embedding input Ids take 1 variable but got {}".format(
606
            kwargs['W']
607 608 609 610 611 612 613 614 615
        )
        assert (
            len(kwargs['Out@GRAD']) == 1
        ), "row_parallel_embedding input Ids take 1 variable but got {}".format(
            kwargs['Out']
        )
        assert (
            len(kwargs['W@GRAD']) == 1
        ), "row_parallel_embedding output Ids take 1 variable but got {}".format(
616
            kwargs['W@GRAD']
617
        )
618

Z
zhaoyingli 已提交
619 620 621 622
        Ids_var = main_block._var_recursive(kwargs['Ids'][0])
        Weight_var = main_block._var_recursive(kwargs['W'][0])
        Out_grad = main_block._var_recursive(kwargs['Out@GRAD'][0])
        Weight_grad = main_block._var_recursive(kwargs['W@GRAD'][0])
623 624

        embedding_row_dim_mapping = dist_attr.get_input_dims_mapping(
625 626 627 628 629 630 631
            Weight_var.name
        )[0]
        assert (
            embedding_row_dim_mapping >= 0
        ), "row_parallel_embedding's row should be divided by a specific mesh axis, but got [{}]".format(
            embedding_row_dim_mapping
        )
632 633
        process_mesh_shape = dist_attr.process_mesh.shape
        process_mesh_group = dist_attr.process_mesh.process_ids
634 635

        # A generalized method to caculate embedding offset using cartisian product
636 637 638 639 640 641
        relative_idx = _get_idx_in_axis(
            process_mesh_group,
            process_mesh_shape,
            embedding_row_dim_mapping,
            rank_id,
        )
642 643 644 645
        per_part_size = Weight_var.shape[0]
        relative_idx = relative_idx * per_part_size

        check_variable_and_dtype(
646 647 648 649 650
            Out_grad,
            'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            '_c_identity',
        )
651 652

        intermediate_var_0 = main_block.create_var(
653 654 655
            name=unique_name.generate_with_ignorable_key(
                ".".join(["c_embedding", '@tmp_0@GRAD'])
            ),
656 657 658 659
            dtype=Out_grad.dtype,
            shape=Out_grad.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
660 661
            stop_gradient=Out_grad.stop_gradient,
        )
662 663 664 665

        # copy X_var's dist_attr to intermediate_var_0's dist_attr
        out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
        assert out_grad_dist_attr is not None
666 667 668
        ctx.set_tensor_dist_attr_for_program(
            intermediate_var_0, out_grad_dist_attr
        )
669

670 671 672 673 674 675
        group_ranks = _get_comm_group(
            process_mesh_group,
            process_mesh_shape,
            embedding_row_dim_mapping,
            rank_id,
        )
676 677 678 679 680 681 682 683 684 685 686
        group = new_process_group(group_ranks)

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [Out_grad]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
                OP_ROLE_KEY: OpRole.Backward,
687 688 689 690 691 692 693 694 695 696 697
            },
        )
        check_variable_and_dtype(
            intermediate_var_0, 'x', ['float16', 'float32', 'float64'], 'linear'
        )
        check_dtype(
            intermediate_var_0.dtype,
            'dtype',
            ['float16', 'float32', 'float64'],
            'linear',
        )
698

699 700 701
        set_comm_op_dist_attr_for_program(
            c_identity_op, dist_attr.process_mesh, out_grad_dist_attr, ctx
        )
702

703
        c_embedding_grad_op_desc = main_block.append_op(type='nop').desc
704 705 706
        c_embedding_grad_op_desc.set_type("c_embedding_grad")
        c_embedding_grad_op_desc.set_input('Ids', [Ids_var.name])
        c_embedding_grad_op_desc.set_input('W', [Weight_var.name])
707 708 709
        c_embedding_grad_op_desc.set_input(
            'Out@GRAD', [intermediate_var_0.name]
        )
710 711 712 713 714 715
        c_embedding_grad_op_desc.set_output('W@GRAD', [Weight_grad.name])
        c_embedding_grad_op_desc._set_attr('start_index', relative_idx)
        c_embedding_grad_op_desc._set_attr(OP_ROLE_KEY, OpRole.Backward)

        c_embedding_grad_op = main_block.ops[-1]
        assert c_embedding_grad_op.type == "c_embedding_grad"
716 717 718
        naive_copy_op_dist_attr_for_program(
            c_embedding_grad_op, backward_op, ctx
        )
719

720 721 722
        # data parallel gradient synchronization
        act_grad_names = [Ids_var.name]
        out_grad_names = [kwargs['W@GRAD'][0]]
723

724 725 726
        gradient_synchronization(
            ctx, backward_op, act_grad_names, out_grad_names, rank_id
        )
727

728

729 730 731 732 733 734 735 736 737
register_distributed_operator_impl(
    "lookup_table_v2", DistributedEmbeddingImpl("row_parallel")
)
register_distributed_operator_impl(
    "c_embedding", DistributedEmbeddingImpl("row_parallel")
)
register_distributed_operator_impl(
    "lookup_table", DistributedEmbeddingImpl("row_parallel")
)