mkldnn_reuse.h 69.6 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27 28 29 30 31
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

32 33
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
34
using user_function = std::function<std::shared_ptr<float>(const float*)>;
35
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
36

J
Jacek Czaja 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
class MKLDNNHandlerNoCachingT {
 public:
  MKLDNNHandlerNoCachingT(mkldnn::engine engine, platform::Place cpu_place)
      : engine_(engine),
        place_(cpu_place),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }

  std::shared_ptr<TForward> AcquireForwardPrimitive() {
     return  forward_p = std::make_shared<TForward>(*fwd_pd_);
  }

  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
     return  backward_p = std::make_shared<TBackward>(*bwd_pd_);
  }

  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
      PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_, platform::errors::Unavailable(
                                             "Error: BWD_PD should be set when "
                                             "getting BWD prim witk key: %s .",
                                             key_p));
     return std::make_shared<TBackward_params>(*bwd_w_pd_);
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data));
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr);
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc());
  }

  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data));
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr));
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr);
  }

  // Buffer of given Tensor is used for oneDNN computation
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "Error: BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), ptr);
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "Error: BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc());
  }

 protected:

  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
  }

  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
    bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  template <typename... Args>
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed."));
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, void* ptr) {
      return std::make_shared<mkldnn::memory>(md, engine_, ptr);
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md) {
      return std::make_shared<mkldnn::memory>(md, engine_);
  }

  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p) {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    platform::RecordEvent record_reorder("int_reorder",
                                         platform::EventRole::kUniqueOp);
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  template <typename F = T>
  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
      const std::string& suffix, bool is_persistent = false,
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {

      std::shared_ptr<mkldnn::memory> target_memory_p;
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
        auto reorder_p =
            std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
    return target_memory_p;
  }


  mkldnn::engine engine_;
  platform::Place place_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
};

250
template <typename T, typename TForward,
251 252
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
253 254 255 256 257 258 259 260
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
261
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
262
        fwd_pd_(nullptr),
263 264 265
        bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
266

A
Adam 已提交
267
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
268
    const std::string key_p = key_ + "@fwd_p";
269 270 271
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
272
      forward_p = std::make_shared<TForward>(*fwd_pd_);
273 274 275 276 277
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
278
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
279
    const std::string key_p = key_ + "@bwd_p";
280 281 282
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
283
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
284 285 286 287 288
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    const std::string key_p = key_ + "@bwd_w_p";
    auto backward_p =
        std::static_pointer_cast<TBackward_params>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      PADDLE_ENFORCE_NOT_NULL(bwd_w_pd_, platform::errors::Unavailable(
                                             "Error: BWD_PD should be set when "
                                             "getting BWD prim witk key: %s .",
                                             key_p));
      backward_p = std::make_shared<TBackward_params>(*bwd_w_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

304 305 306
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
307 308
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
309 310
  }

311
  template <typename T_out = T>
312
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
313 314
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
A
Adam 已提交
315
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
316 317 318
                                            "@dst_mem_p");
  }

319 320 321 322 323
  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p");
  }

324
  template <typename T_out = T>
325 326
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
327 328 329 330
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
331 332 333 334 335
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
336 337
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
338 339 340 341
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
342 343 344 345
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
346 347
  }

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  // Buffer of given Tensor is used for oneDNN computation
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "Error: BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(), ptr,
                                            "@diff_wei_mem_p");
  }

  // Buffer is allocated by oneDNN to store computation results
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemory(void) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "Error: BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            "@diff_wei_mem_p");
  }

371
 protected:
372
  bool isCached() {
373 374 375 376 377 378 379
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    return (fwd_pd_ != nullptr);
  }

380
  bool isBwdCached() {
381
    const std::string key_pd = key_ + "@bwd_pd";
382 383 384
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

385 386 387 388 389 390 391 392 393 394 395 396
    if (bwd_pd_ == nullptr) {
      return false;
    } else {
      // When BWD is cached then still we need to Get FWD PD
      const std::string key_fpd = key_ + "@fwd_pd";
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_fpd));
      PADDLE_ENFORCE_NOT_NULL(
          fwd_pd_, platform::errors::Unavailable(
                       "Error: FWD PD should be set when BWD PD is cached."));
      return true;
    }
397 398
  }

399 400 401 402 403 404
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
405 406 407 408 409 410 411 412 413 414 415
    // This is used when we can recreate FWD PD in BWD so
    // we do not need to pass FWD to BWD
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_pd, fwd_pd_);
    }
  }

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

437 438
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
439
    // fwd_pd_ is set during grad by calling
440
    // AcquireForwardPrimitiveDescriptor
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

456
  template <typename... Args>
457
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
458
    // fwd_pd_ is set during grad by calling
459
    // AcquireForwardPrimitiveDescriptor
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_w_pd";
    bwd_w_pd_ =
        std::static_pointer_cast<typename TBackward_params::primitive_desc>(
            dev_ctx_.GetBlob(key_pd));
    if (bwd_w_pd_ == nullptr) {
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_w_pd_);
    }
  }

477 478 479 480 481 482
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      const std::string& suffix) {
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(key_ + suffix));
  }

483
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
484
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
485
    const auto local_key = key_ + suffix;
486 487 488
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
489
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
490 491 492 493 494 495 496
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

497 498 499 500 501 502 503 504 505 506 507 508
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

509 510 511 512 513 514 515 516 517 518 519 520 521 522
  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p,
                      const std::string& suffix) {
    const auto key_reorder_p = key_ + suffix + "reorder_p";

    auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
    }

523
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
524 525 526

    platform::RecordEvent record_reorder("int_reorder",
                                         platform::EventRole::kUniqueOp);
527 528 529 530 531
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

532
  template <typename F = T>
533 534 535
  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
536 537
      const std::string& suffix, bool is_persistent = false,
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
538 539 540 541 542 543 544 545
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
546 547 548 549 550 551
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
552 553 554 555 556 557 558 559
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
        auto reorder_p =
            std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

560
        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
561 562
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
563 564 565 566 567 568 569 570 571
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
572
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
573 574 575 576 577 578 579 580

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
581 582
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
583 584 585 586 587 588 589 590
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

591 592 593 594 595 596
  std::shared_ptr<mkldnn::memory> AcquireMemory(const std::string& suffix) {
    const auto local_key = key_ + suffix;
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(local_key));
  }

597 598 599 600
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_common_;
601
  std::string key_;
602 603
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
604
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
605 606 607
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
608 609 610 611
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
612 613 614
      : dev_ctx_(dev_ctx),
        engine_(engine),
        key_common_(base_key),
615 616 617
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
J
Jacek Czaja 已提交
618 619 620 621 622 623 624 625 626 627 628

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
629
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
630
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
631
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
632 633
  }

A
Adam 已提交
634
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
635
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
636
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
637 638 639
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
640
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
J
Jacek Czaja 已提交
641 642 643 644
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
645
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
646 647 648 649 650 651 652
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

653 654 655 656 657 658 659 660 661 662 663 664
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

A
Adam 已提交
682
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
683 684 685 686 687 688 689
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

690
  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
691
      const std::vector<int64_t>& dims, const mkldnn::memory::data_type dtype,
692
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
693 694 695 696 697 698 699
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

A
Adam 已提交
700
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
701 702 703 704 705 706 707
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
725
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
726 727
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
A
Adam 已提交
728 729 730
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
J
Jacek Czaja 已提交
731 732 733 734 735 736
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
737 738
      mkldnn::memory::desc& md,       // NOLINT
      mkldnn::memory::desc& user_md,  // NOLINT
J
Jacek Czaja 已提交
739 740 741
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
742 743
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
744 745 746 747 748 749
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
A
Adam 已提交
750

751
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
752

J
Jacek Czaja 已提交
753 754
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
A
Adam 已提交
755 756 757
      if (md != user_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(md, engine_);
        std::shared_ptr<mkldnn::reorder::primitive_desc> reorder_pd;
758 759 760 761 762
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

A
Adam 已提交
763 764 765
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p, attri));
766
        } else {
A
Adam 已提交
767 768 769
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p));
770
        }
A
Adam 已提交
771 772
        auto reorder_p =
            std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd));
J
Jacek Czaja 已提交
773
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
774

775 776
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
A
Adam 已提交
777 778 779
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
780 781 782 783 784 785 786
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
787 788
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
A
Adam 已提交
789 790 791
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
792 793 794 795 796 797 798 799
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
800
  std::string key_common_;
801
  std::string key_;
J
Jacek Czaja 已提交
802 803
};

804 805 806
template <typename T>
class BinaryMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::binary> {
 public:
807 808
  BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
                      const MKLDNNDeviceContext& dev_ctx,
809 810
                      const mkldnn::engine engine, platform::Place cpu_place,
                      const Tensor* x, const Tensor* y, Tensor* z,
811
                      float scale_x, float scale_y, float scale_z,
812
                      const std::string& uniq_name)
813
      : platform::MKLDNNHandlerT<T, dnnl::binary>(
814
            dev_ctx, engine, cpu_place,
815 816
            platform::CreateKey(dev_ctx, framework::vectorize(x->dims()),
                                uniq_name)) {
817 818 819
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          x->layout(), DataLayout::kMKLDNN,
G
GaoWei8 已提交
820
          platform::errors::InvalidArgument("Wrong layout set for X tensor."));
821 822
      PADDLE_ENFORCE_NE(
          x->format(), MKLDNNMemoryFormat::undef,
G
GaoWei8 已提交
823
          platform::errors::InvalidArgument("Wrong format set for X tensor."));
824 825 826

      PADDLE_ENFORCE_EQ(
          y->layout(), DataLayout::kMKLDNN,
G
GaoWei8 已提交
827
          platform::errors::InvalidArgument("Wrong layout set for Y tensor."));
828 829
      PADDLE_ENFORCE_NE(
          y->format(), MKLDNNMemoryFormat::undef,
G
GaoWei8 已提交
830
          platform::errors::InvalidArgument("Wrong format set for Y tensor."));
831 832 833

      const auto src_x_tz = framework::vectorize(x->dims());
      const auto src_y_tz = framework::vectorize(y->dims());
834 835
      // if output tensor(z) is nullptr then we are computing into oneDNN
      // managed buffer
836 837 838
      auto rankdiff = x->dims().size() - y->dims().size();
      const auto dst_tz = (z == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz)
                                         : framework::vectorize(z->dims());
839

840
      auto src0_md = dnnl::memory::desc(
841
          src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
842
      auto src1_md = dnnl::memory::desc(
843
          src_y_tz, platform::MKLDNNGetDataType<T>(), y->format());
844
      if (rankdiff > 0) {  // Second input is of smaller rank than first
845 846 847
        std::vector<int64_t> dims1_ex(rankdiff, 1);
        dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                        src_y_tz.begin(), src_y_tz.end());
848
        src1_md = src1_md.reshape(dims1_ex);
849 850 851 852 853
      } else if (rankdiff < 0) {  // First input is of smaller than second
        std::vector<int64_t> dims0_ex(-rankdiff, 1);
        dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)),
                        src_x_tz.begin(), src_x_tz.end());
        src0_md = src0_md.reshape(dims0_ex);
854
      }
855 856 857
      const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                       MKLDNNMemoryFormat::any);

858 859 860
      auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z);
      this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md,
                                              src1_md, dst_md);
861
    }
862 863 864 865 866 867
  }

  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
868
        this->fwd_pd_->src1_desc(), to_void_cast<T>(input_data), "@src1_mem_p");
869
  }
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

 private:
  static inline dnnl::primitive_attr CreateAttributes(dnnl::algorithm op,
                                                      float scale_x,
                                                      float scale_y,
                                                      float scale_z) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_z / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_z / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0,
                          {scale_0});
    attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0,
                          {scale_1});
    return attributes;
  }
902 903
};

904 905 906 907 908 909 910
template <typename T>
class BroadcastDataMKLDNNHandler
    : public platform::MKLDNNHandlerT<T, dnnl::binary> {
 public:
  BroadcastDataMKLDNNHandler(const dnnl::algorithm algo,
                             const MKLDNNDeviceContext& dev_ctx,
                             const mkldnn::engine engine,
911 912
                             platform::Place cpu_place, const Tensor* out,
                             const Tensor* x, float scale_x, float scale_y,
J
jakpiase 已提交
913
                             const std::string& uniq_name,
914
                             const std::vector<int64_t>& input_dims)
915 916 917 918 919 920 921 922 923 924 925 926
      : platform::MKLDNNHandlerT<T, dnnl::binary>(
            dev_ctx, engine, cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(x->dims()),
                                uniq_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          x->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument("Wrong layout set for X tensor."));
      PADDLE_ENFORCE_NE(
          x->format(), MKLDNNMemoryFormat::undef,
          platform::errors::InvalidArgument("Wrong format set for X tensor."));

927
      const auto src0_tz = framework::vectorize(out->dims());
928 929

      const auto src0_md = dnnl::memory::desc(
930
          src0_tz, platform::MKLDNNGetDataType<T>(), out->format());
931
      const auto src1_md = dnnl::memory::desc(
932
          input_dims, platform::MKLDNNGetDataType<T>(), out->format());
933 934 935 936 937 938 939 940 941 942

      dnnl::primitive_attr attributes;
      attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
      attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y});

      this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md,
                                              src1_md, src0_md);
    }
  }

943 944 945 946 947 948 949 950
  template <typename T_out = T>
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
    T_out* ptr = output->mutable_data<T_out>(
        this->place_, this->fwd_pd_->dst_desc().get_size());
    ;
    memset(ptr, 0, this->fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr,
                                            "@dst_mem_p");
951 952 953
  }
};

954 955 956 957 958 959 960 961
template <typename T>
class ReductionMKLDNNHandler
    : public platform::MKLDNNHandlerT<T, dnnl::reduction> {
 public:
  ReductionMKLDNNHandler(const dnnl::algorithm algo, const float p,
                         const float eps, const MKLDNNDeviceContext& dev_ctx,
                         const mkldnn::engine engine, platform::Place cpu_place,
                         const Tensor* x, const Tensor* y,
962
                         const std::string& uniq_name,
J
jakpiase 已提交
963
                         std::vector<int64_t> y_tz)
964 965 966 967 968 969 970 971 972 973 974 975 976
      : platform::MKLDNNHandlerT<T, dnnl::reduction>(
            dev_ctx, engine, cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(x->dims()),
                                uniq_name,
                                (std::to_string(static_cast<int>(algo))))) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          x->layout(), DataLayout::kMKLDNN,
          platform::errors::InvalidArgument("Wrong layout set for X tensor."));
      PADDLE_ENFORCE_NE(
          x->format(), MKLDNNMemoryFormat::undef,
          platform::errors::InvalidArgument("Wrong format set for X tensor."));

J
jakpiase 已提交
977
      const auto x_tz = framework::vectorize(x->dims());
978

J
jakpiase 已提交
979 980 981 982
      const auto x_md = dnnl::memory::desc(
          x_tz, platform::MKLDNNGetDataType<T>(), x->format());
      const auto y_md =
          memory::desc(y_tz, platform::MKLDNNGetDataType<T>(), x->format());
983

J
jakpiase 已提交
984
      this->AcquireForwardPrimitiveDescriptor(algo, x_md, y_md, p, eps);
985 986 987 988
    }
  }
};

989
template <typename T>
990 991 992
class ActivationMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                            mkldnn::eltwise_backward> {
993
 public:
994 995 996 997
  ActivationMKLDNNHandler(mkldnn::algorithm algorithm,
                          const framework::ExecutionContext& ctx,
                          const MKLDNNDeviceContext& dev_ctx, Place cpu_place,
                          const framework::Tensor* in_x,
998
                          const std::string& unique_name, bool is_inplaced)
999 1000 1001
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
            is_inplaced ? platform::CreateKey(
                              dev_ctx, framework::vectorize(in_x->dims()), "a",
                              algorithm, unique_name)
                        : platform::CreateKey(
                              dev_ctx, framework::vectorize(in_x->dims()), "a",
                              unique_name)) {
    if (!this->isCached()) {
      float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
      float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;
      // eltwise_linear means we are in scale op
      if (algorithm == mkldnn::algorithm::eltwise_linear) {
        bool bias_after_scale = ctx.Attr<bool>("bias_after_scale");
        auto* scale_tensor = ctx.Input<Tensor>("ScaleTensor");
        alpha = (scale_tensor == nullptr) ? ctx.Attr<float>("scale")
                                          : (float)*(scale_tensor->data<T>());
        beta = ctx.Attr<float>("bias");
        // if bias_after_scale == true
        //   out = scale*X + bias
        // else
        //   out = scale*(X + bias) = scale*X + scale*bias
        if (!bias_after_scale) beta *= alpha;
      } else {
        // paddle uses beta but mkldnn uses alpha for swish
        if (algorithm == mkldnn::algorithm::eltwise_swish) {
          std::swap(alpha, beta);
        } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
          alpha = ctx.Attr<float>("threshold");
        }
      }
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
      PADDLE_ENFORCE(in_x->dims().size() >= 1 || in_x->dims().size() <= 6,
                     platform::errors::Unimplemented(
                         "Input dimension size can be 1, 2, 3, 4, "
                         "5, or 6, but now the dimension size is",
                         in_x->dims().size()));

      auto src_tz = framework::vectorize<int64_t>(in_x->dims());
      auto src_fmt =
          src_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
      auto md = mkldnn::memory::desc(src_tz, platform::MKLDNNGetDataType<T>(),
                                     src_fmt);

      this->AcquireForwardPrimitiveDescriptor(
          mkldnn::prop_kind::forward_training, algorithm, md, alpha, beta);
    }
  }

  ActivationMKLDNNHandler(mkldnn::algorithm algorithm,
                          const framework::ExecutionContext& ctx,
                          const MKLDNNDeviceContext& dev_ctx, Place cpu_place,
                          const framework::Tensor* in_x, const Tensor* out_grad,
                          const std::string& unique_name)
1054 1055 1056
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
            platform::CreateKey(dev_ctx, framework::vectorize(in_x->dims()),
                                "a", unique_name)) {
    if (!this->isBwdCached()) {
      float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
      float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;

      // paddle uses beta but mkldnn uses alpha for swish
      if (algorithm == mkldnn::algorithm::eltwise_swish) {
        std::swap(alpha, beta);
      } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
        alpha = ctx.Attr<float>("threshold");
      }

      auto diff_dst_tz = framework::vectorize<int64_t>(out_grad->dims());

      auto src_fmt =
          diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : in_x->format();
      auto diff_fmt =
          diff_dst_tz.size() == 2 ? MKLDNNMemoryFormat::nc : out_grad->format();

      auto dims = framework::vectorize(in_x->dims());
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
      auto src_md = platform::MKLDNNMemDesc(
          dims, platform::MKLDNNGetDataType<T>(), src_fmt);

      this->AcquireForwardPrimitiveDescriptor(
          mkldnn::prop_kind::forward_training, algorithm, src_md, alpha, beta);
      this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                               alpha, beta);
    }
1088
  }
1089

1090 1091 1092
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
1093
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
1094 1095
                                            to_void_cast<T>(input_data),
                                            "@bwd-src_mem_p");
1096 1097 1098
  }
};

1099
template <typename T>
1100 1101
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
1102 1103
  TransposeMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                         std::vector<int>& axis,      // NOLINT
1104 1105 1106 1107
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
1108 1109 1110 1111
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
1112
      const MKLDNNMemoryFormat& fmt, void* ptr) {
1113 1114 1115 1116 1117 1118 1119 1120 1121
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
1122

A
Adam 已提交
1123
      auto src_md = fmt != MKLDNNMemoryFormat::nchw
1124
                        ? platform::MKLDNNMemDesc(
1125
                              dims_, platform::MKLDNNGetDataType<T>(), fmt)
1126
                        : Axis2MemoryDesc(dims_, logical_axis_);
A
Adam 已提交
1127
      mem_p = std::make_shared<mkldnn::memory>(src_md, engine_, ptr);
1128 1129 1130 1131 1132 1133
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }
1134 1135 1136 1137 1138 1139 1140

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
1141
      auto dst_md = Axis2MemoryDesc(dims_, axis_);
1142

A
Adam 已提交
1143
      auto dst_data = output->mutable_data<T>(place, dst_md.get_size());
1144

A
Adam 已提交
1145
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
1146 1147
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
1148
      auto dst_data = output->mutable_data<T>(place);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    }
    return transpose_p;
  }

 protected:
A
Adam 已提交
1169 1170 1171 1172
  mkldnn::memory::desc Axis2MemoryDesc(std::vector<int64_t>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis          // NOLINT
                                       ) {
    size_t ndims = axis.size();
1173

A
Adam 已提交
1174
    std::vector<int64_t> strides(ndims);
1175
    unsigned int total_stride = 1;
A
Adam 已提交
1176 1177
    for (int i = ndims - 1; i >= 0; --i) {
      strides[axis[i]] = total_stride;
1178 1179
      total_stride *= nchw_tz[axis[i]];
    }
A
Adam 已提交
1180 1181 1182 1183
    mkldnn::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType<T>(),
                               strides);

    return mem_d;
1184 1185 1186
  }

 private:
A
Adam 已提交
1187
  std::vector<int64_t> dims_;
1188
  std::vector<int> axis_;
1189
  std::vector<int> logical_axis_;
1190 1191
};

1192 1193
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
1194
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
1195 1196 1197 1198 1199 1200 1201
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        vtype_dst_(vtype),
        dtype_(dtype),
        dtype_dst_(dtype) {}

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       framework::proto::VarType::Type vtype_dst,
                       mkldnn::memory::data_type dtype_dst,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
        dtype_dst_(dtype_dst) {}
1219 1220

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
1221
      const MKLDNNMemoryFormat& fmt, void* ptr) {
1222
    return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p");
1223 1224
  }

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
  std::shared_ptr<mkldnn::memory> AcquireSrcSubmemory(
      const std::vector<int64_t>& dims, const std::vector<int64_t>& offset,
      const std::shared_ptr<mkldnn::memory>& mem_p, int submemory_number) {
    std::string local_key = key_;
    local_key.append("@submem")
        .append(std::to_string(submemory_number))
        .append("_p");

    auto sub_mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (sub_mem_p == nullptr) {
      auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
      sub_mem_p = std::make_shared<mkldnn::memory>(sub_md, engine_,
                                                   mem_p->get_data_handle());
      dev_ctx_.SetBlob(local_key, sub_mem_p);
    } else {
      sub_mem_p->set_data_handle(mem_p->get_data_handle());
    }
    return sub_mem_p;
  }

1246
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
1247
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
1248 1249 1250 1251 1252
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
1253 1254 1255
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
      auto dst_data =
          output->mutable_data(place, vtype_dst_, dst_md.get_size());
1256

A
Adam 已提交
1257
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
1258 1259
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
1260 1261
      // Even if memory object exists , we may be using it for diffrent tensor
      auto dst_data =
1262
          output->mutable_data(place, vtype_dst_, mem_p->get_desc().get_size());
1263 1264 1265 1266 1267
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      framework::Tensor* output, const std::vector<int64_t>& dims,
      const int memory_number, const MKLDNNMemoryFormat& fmt,
      platform::Place place) {
    auto local_key =
        key_ + "@user_dst_mem" + std::to_string(memory_number) + "_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
      auto dst_data =
          output->mutable_data(place, vtype_dst_, dst_md.get_size());

      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      // Even if memory object exists , we may be using it for diffrent tensor
      auto dst_data =
          output->mutable_data(place, vtype_dst_, mem_p->get_desc().get_size());
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p, int reorder_number) {
    auto prim_key = key_ + "@reorder" + std::to_string(reorder_number) + "_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

 private:
A
Adam 已提交
1321
  std::vector<int64_t> dims_;
1322 1323
  framework::proto::VarType::Type vtype_, vtype_dst_;
  mkldnn::memory::data_type dtype_, dtype_dst_;
1324 1325
};

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
1340 1341 1342
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
1343 1344 1345 1346
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

1347 1348 1349 1350 1351 1352 1353 1354 1355
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

A
Adam 已提交
1373
  size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); }
J
Jacek Czaja 已提交
1374

1375
  MKLDNNMemoryFormat GetDstFormat() const {
A
Adam 已提交
1376
    return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc());
J
Jacek Czaja 已提交
1377 1378 1379
  }

  size_t GetDiffWeightsMemorySize() const {
A
Adam 已提交
1380
    return conv_bwd_weights_pd_->diff_weights_desc().get_size();
J
Jacek Czaja 已提交
1381 1382 1383
  }

  size_t GetDiffSourceMemorySize() const {
A
Adam 已提交
1384
    return conv_bwd_data_pd_->diff_src_desc().get_size();
J
Jacek Czaja 已提交
1385 1386 1387 1388 1389
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1390 1391
    auto src_pd = conv_bwd_weights_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1392 1393 1394 1395 1396 1397 1398
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1399 1400
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1401 1402 1403 1404 1405 1406 1407
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
A
Adam 已提交
1408
        conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p");
J
Jacek Czaja 已提交
1409 1410
  }

1411 1412 1413 1414 1415 1416
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_desc(), "@diff_weights_mem_p");
  }

J
Jacek Czaja 已提交
1417 1418 1419
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1420 1421
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1422 1423 1424 1425 1426 1427 1428
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1429 1430
    auto weights_pd = conv_bwd_data_pd_->weights_desc();
    auto user_pd = user_weights_memory_p->get_desc();
J
Jacek Czaja 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
A
Adam 已提交
1451 1452
    return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(),
                                            ptr, "@diff_src_mem_p");
J
Jacek Czaja 已提交
1453 1454 1455
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
1456
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr,
J
Jacek Czaja 已提交
1457 1458 1459 1460 1461 1462
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1463 1464
    auto src_pd = conv_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1465 1466 1467 1468
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
1480 1481 1482
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
1483 1484
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
A
Adam 已提交
1485 1486
    auto user_weights_pd = user_weights_memory_p->get_desc();
    auto weights_pd = conv_pd_->weights_desc();
1487 1488 1489
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
1490 1491 1492 1493
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
1494 1495 1496 1497
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
A
Adam 已提交
1498 1499
    auto user_bias_pd = user_bias_memory_p->get_desc();
    auto bias_pd = conv_pd_->bias_desc();
J
Jacek Czaja 已提交
1500
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
1501 1502
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
1503 1504
  }

1505
  mkldnn::primitive_attr CreatePostOps(
1506 1507
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
1508
      float sum_scale = 1.0f) const {
1509 1510
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
1511 1512 1513 1514
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
1515 1516 1517 1518 1519 1520
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
1521
      post_operations.append_sum(sum_scale);
1522 1523 1524
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
1525
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
1526 1527
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
1528
                                     fuse_alpha, fuse_beta);
1529
    } else if (fuse_activation == "relu6") {
1530 1531 1532
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
1533
                                     fuse_alpha, fuse_beta);
1534 1535 1536 1537
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
1538
    }
1539 1540 1541 1542 1543 1544 1545 1546
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
A
Adam 已提交
1547
      const mkldnn::memory::desc& dst, const std::vector<int64_t>& strides,
1548
      const std::vector<int64_t>& dilations,
A
Adam 已提交
1549
      const std::vector<int64_t>& paddings, const mkldnn::engine& engine,
1550 1551
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1552 1553
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1554 1555 1556 1557
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_conv_pd = key_common_ + "@conv_pd";
1558

1559
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1560 1561
        dev_ctx_.GetBlob(key_conv_pd));

1562 1563 1564 1565 1566 1567 1568 1569 1570
    if (conv_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
          dev_ctx_.GetBlob(key_conv_pd));
      if (conv_pd_ == nullptr) {
        mkldnn::memory::dims stride_dims = strides;
1571
        mkldnn::memory::dims dilations_dims = dilations;
1572
        auto mkldnn_paddings = ToMkldnnPadding(paddings);
1573 1574

        auto conv_desc =
A
Adam 已提交
1575 1576
            bias ? typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
1577
                       src, weights, *bias, dst, stride_dims, dilations_dims,
A
Adam 已提交
1578 1579 1580
                       mkldnn_paddings[0], mkldnn_paddings[1])
                 : typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
1581 1582
                       src, weights, dst, stride_dims, dilations_dims,
                       mkldnn_paddings[0], mkldnn_paddings[1]);
1583

1584
        mkldnn::primitive_attr conv_attr =
1585 1586
            CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                          fuse_residual_conn, output_shift_scale, sum_scale);
1587 1588 1589 1590 1591 1592

        conv_pd_.reset(new typename forward_t::primitive_desc(
            conv_desc, conv_attr, engine));
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
      }
1593 1594 1595 1596 1597
    }

    return conv_pd_;
  }

A
Adam 已提交
1598
  std::shared_ptr<forward_t> AcquireConvolution() {
J
Jacek Czaja 已提交
1599 1600 1601 1602
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
A
Adam 已提交
1603
      conv_p = std::make_shared<forward_t>(*conv_pd_);
J
Jacek Czaja 已提交
1604 1605 1606 1607 1608 1609

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

A
Adam 已提交
1610
  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights() {
J
Jacek Czaja 已提交
1611 1612 1613 1614 1615
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
A
Adam 已提交
1616 1617
      conv_bwd_weights_p =
          std::make_shared<backward_weights_t>(*conv_bwd_weights_pd_);
J
Jacek Czaja 已提交
1618 1619 1620 1621 1622
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

A
Adam 已提交
1623
  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData() {
J
Jacek Czaja 已提交
1624 1625 1626 1627
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
A
Adam 已提交
1628
      conv_bwd_data_p = std::make_shared<backward_data_t>(*conv_bwd_data_pd_);
J
Jacek Czaja 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
1670 1671 1672 1673
  PADDLE_ENFORCE_NOT_NULL(
      residual_param_data,
      platform::errors::PreconditionNotMet("Residual parameter is required for "
                                           "the DNNL conv+elementwise_add "
G
GaoWei8 已提交
1674
                                           "fusion, but now it is missing."));
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1695 1696 1697
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
1698 1699
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
1700 1701
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
1702 1703
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1704
  MKLDNNMemoryFormat dst_fmt;
G
GaoWei8 已提交
1705 1706 1707 1708
  PADDLE_ENFORCE_LE(dst_dims, 5, platform::errors::InvalidArgument(
                                     "Dst memory for quantization can not have "
                                     "dims > 5. But received dst_dims is %d.",
                                     dst_dims));
1709
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1710

A
Adam 已提交
1711
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1712
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1713
                    framework::DataTypeTrait<T>::DataType()),
1714
      dst_fmt);
A
Adam 已提交
1715 1716 1717
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1718
}
J
Jacek Czaja 已提交
1719 1720
}  // namespace platform
}  // namespace paddle