Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
43527a2b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
43527a2b
编写于
4月 30, 2021
作者:
J
jakpiase
提交者:
GitHub
4月 30, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Reduce grad fix (#32592)
上级
a3e77197
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
79 addition
and
73 deletion
+79
-73
paddle/fluid/operators/reduce_ops/mkldnn/reduce_mean_mkldnn_op.cc
...luid/operators/reduce_ops/mkldnn/reduce_mean_mkldnn_op.cc
+2
-1
paddle/fluid/operators/reduce_ops/mkldnn/reduce_mkldnn_op.h
paddle/fluid/operators/reduce_ops/mkldnn/reduce_mkldnn_op.h
+60
-30
paddle/fluid/operators/reduce_ops/mkldnn/reduce_sum_mkldnn_op.cc
...fluid/operators/reduce_ops/mkldnn/reduce_sum_mkldnn_op.cc
+2
-1
paddle/fluid/operators/reduce_ops/reduce_op.h
paddle/fluid/operators/reduce_ops/reduce_op.h
+5
-20
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+10
-21
未找到文件。
paddle/fluid/operators/reduce_ops/mkldnn/reduce_mean_mkldnn_op.cc
浏览文件 @
43527a2b
...
...
@@ -45,7 +45,8 @@ class ReduceMeanGradMKLDNNKernel : public ReduceGradMKLDNNKernel<T> {
number_of_elements
=
input_x
->
numel
();
}
this
->
RunKernel
(
ctx
,
dnnl
::
algorithm
::
binary_add
,
0.0
f
,
this
->
RunKernel
(
ctx
,
dnnl
::
algorithm
::
binary_add
,
dnnl
::
algorithm
::
reduction_mean
,
0.0
f
,
1.0
L
/
number_of_elements
);
}
};
...
...
paddle/fluid/operators/reduce_ops/mkldnn/reduce_mkldnn_op.h
浏览文件 @
43527a2b
...
...
@@ -21,6 +21,27 @@ using paddle::framework::LoDTensor;
using
paddle
::
framework
::
Tensor
;
using
platform
::
to_void_cast
;
inline
std
::
vector
<
int64_t
>
CalculateReducedDims
(
const
Tensor
*
input
,
const
Tensor
*
output
,
std
::
vector
<
int
>&
reduce_dims
,
bool
reduce_all
,
bool
keep_dim
)
{
if
(
keep_dim
)
return
framework
::
vectorize
(
output
->
dims
());
if
(
reduce_all
)
return
std
::
vector
<
int64_t
>
(
framework
::
vectorize
(
input
->
dims
()).
size
(),
1
);
std
::
vector
<
int64_t
>
output_dims
(
framework
::
vectorize
(
input
->
dims
()));
for
(
size_t
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
{
reduce_dims
[
i
]
=
(
reduce_dims
[
i
]
>=
0
)
?
reduce_dims
[
i
]
:
input
->
dims
().
size
()
+
reduce_dims
[
i
];
output_dims
[
reduce_dims
[
i
]]
=
1
;
}
return
output_dims
;
}
template
<
typename
T
>
class
ReduceMKLDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -37,9 +58,8 @@ class ReduceMKLDNNKernel : public framework::OpKernel<T> {
bool
reduce_all
=
ctx
.
Attr
<
bool
>
(
"reduce_all"
);
bool
keep_dim
=
ctx
.
Attr
<
bool
>
(
"keep_dim"
);
std
::
vector
<
int64_t
>
output_dims
=
CalculateOutputDims
(
input
,
output
,
reduce_dims
,
reduce_all
,
keep_dim
);
auto
output_dims
=
CalculateReducedDims
(
input
,
output
,
reduce_dims
,
reduce_all
,
keep_dim
);
auto
input_dims
=
framework
::
vectorize
(
input
->
dims
());
auto
&
astream
=
platform
::
MKLDNNDeviceContext
::
tls
().
get_stream
();
...
...
@@ -96,53 +116,63 @@ class ReduceMKLDNNKernel : public framework::OpKernel<T> {
paddle
::
framework
::
vectorize
<
int64_t
>
(
output
->
dims
()))));
}
}
private:
std
::
vector
<
int64_t
>
CalculateOutputDims
(
const
Tensor
*
input
,
const
Tensor
*
output
,
std
::
vector
<
int
>&
reduce_dims
,
bool
reduce_all
,
bool
keep_dim
)
const
{
if
(
keep_dim
)
return
framework
::
vectorize
(
output
->
dims
());
if
(
reduce_all
)
return
std
::
vector
<
int64_t
>
(
framework
::
vectorize
(
input
->
dims
()).
size
(),
1
);
std
::
vector
<
int64_t
>
output_dims
(
framework
::
vectorize
(
input
->
dims
()));
for
(
size_t
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
{
reduce_dims
[
i
]
=
(
reduce_dims
[
i
]
>=
0
)
?
reduce_dims
[
i
]
:
input
->
dims
().
size
()
+
reduce_dims
[
i
];
output_dims
[
reduce_dims
[
i
]]
=
1
;
}
return
output_dims
;
}
};
template
<
typename
T
>
class
ReduceGradMKLDNNKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
RunKernel
(
const
framework
::
ExecutionContext
&
ctx
,
dnnl
::
algorithm
binary_type
,
float
scale_x
,
float
scale_y
)
const
{
dnnl
::
algorithm
binary_type
,
dnnl
::
algorithm
reduction_type
,
float
scale_
x
,
float
scale_
y
)
const
{
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
const
auto
&
onednn_engine
=
dev_ctx
.
GetEngine
();
bool
keep_dim
=
ctx
.
Attr
<
bool
>
(
"keep_dim"
);
bool
reduce_all
=
ctx
.
Attr
<
bool
>
(
"reduce_all"
);
auto
dims
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
);
auto
*
input_dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
output_dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
mkldnn
::
memory
::
format_tag
x_format_tag
;
auto
input_dims
=
CalculateReducedDims
(
output_dx
,
input_dy
,
dims
,
reduce_all
,
keep_dim
);
if
(
input_dims
!=
framework
::
vectorize
(
output_dx
->
dims
()))
{
const
std
::
string
key_pd
=
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
output_dx
->
dims
()),
ctx
.
InputName
(
"X"
),
(
std
::
to_string
(
static_cast
<
int
>
(
reduction_type
))))
+
"@fwd_pd"
;
std
::
shared_ptr
<
dnnl
::
reduction
::
primitive_desc
>
fwd_pd
=
std
::
static_pointer_cast
<
dnnl
::
reduction
::
primitive_desc
>
(
dev_ctx
.
GetBlob
(
key_pd
));
PADDLE_ENFORCE_NOT_NULL
(
fwd_pd
,
platform
::
errors
::
Unavailable
(
"Forward primitive descriptor is not available in %s op, "
"cannot deduce memory format tag"
,
ctx
.
Type
()));
x_format_tag
=
platform
::
GetMKLDNNFormat
(
fwd_pd
->
src_desc
());
PADDLE_ENFORCE_NE
(
x_format_tag
,
mkldnn
::
memory
::
format_tag
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Cannot deduce format tag for %s op"
,
ctx
.
Type
()));
}
else
{
// fwd descriptor not available because reorder was used instead
// of reduction
x_format_tag
=
getPlainFormatTag
(
output_dx
);
}
output_dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
output_dx
->
set_format
(
getPlainFormatTag
(
output_dx
)
);
output_dx
->
set_format
(
x_format_tag
);
output_dx
->
set_layout
(
input_dy
->
layout
());
platform
::
BroadcastDataMKLDNNHandler
<
T
>
handler
(
binary_type
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
output_dx
,
input_dy
,
scale_x
,
scale_y
,
ctx
.
InputName
(
framework
::
GradVarName
(
"Out"
)));
ctx
.
InputName
(
framework
::
GradVarName
(
"Out"
))
,
input_dims
);
const
auto
src_dx_memory
=
handler
.
AcquireSrcMemory
(
output_dx
);
const
auto
src_dy_memory
=
handler
.
AcquireSecondSrcMemory
(
input_dy
);
...
...
paddle/fluid/operators/reduce_ops/mkldnn/reduce_sum_mkldnn_op.cc
浏览文件 @
43527a2b
...
...
@@ -29,7 +29,8 @@ template <typename T>
class
ReduceSumGradMKLDNNKernel
:
public
ReduceGradMKLDNNKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
this
->
RunKernel
(
ctx
,
dnnl
::
algorithm
::
binary_add
,
0.0
f
,
1.0
f
);
this
->
RunKernel
(
ctx
,
dnnl
::
algorithm
::
binary_add
,
dnnl
::
algorithm
::
reduction_sum
,
0.0
f
,
1.0
f
);
}
};
...
...
paddle/fluid/operators/reduce_ops/reduce_op.h
浏览文件 @
43527a2b
...
...
@@ -559,8 +559,11 @@ class ReduceGradOp : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input_data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
));
int
in_dtype
=
ctx
.
Attr
<
int
>
(
"in_dtype"
);
auto
input_data_type
=
(
in_dtype
>=
0
)
?
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
in_dtype
)
:
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
framework
::
GradVarName
(
"Out"
));
#ifdef PADDLE_WITH_MKLDNN
auto
CanMKLDNNReduceGradBeUsed
=
[
&
]()
{
...
...
@@ -568,18 +571,6 @@ class ReduceGradOp : public framework::OperatorWithKernel {
if
(
dx_dims
.
size
()
>
5
)
return
false
;
// max 5D tensor is supported
if
(
ctx
.
Attr
<
bool
>
(
"reduce_all"
)
||
((
int
)
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dim"
).
size
()
==
dx_dims
.
size
()))
return
true
;
auto
dy_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
// Subtensor must be on rightmost part of the bigger tensor
for
(
int
i
=
0
;
i
<
dy_dims
.
size
();
++
i
)
{
if
(
dx_dims
[
dx_dims
.
size
()
-
dy_dims
.
size
()
+
i
]
!=
dy_dims
[
i
])
{
return
false
;
}
}
return
true
;
};
if
(
this
->
CanMKLDNNBeUsed
(
ctx
,
input_data_type
)
&&
...
...
@@ -590,12 +581,6 @@ class ReduceGradOp : public framework::OperatorWithKernel {
}
#endif
int
in_dtype
=
ctx
.
Attr
<
int
>
(
"in_dtype"
);
if
(
in_dtype
>=
0
)
{
return
framework
::
OpKernelType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
in_dtype
),
ctx
.
GetPlace
());
}
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
}
};
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
43527a2b
...
...
@@ -639,7 +639,8 @@ class BroadcastDataMKLDNNHandler
const
mkldnn
::
engine
engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
x
,
const
Tensor
*
y
,
float
scale_x
,
float
scale_y
,
const
std
::
string
&
uniq_name
)
const
std
::
string
&
uniq_name
,
std
::
vector
<
int64_t
>&
input_dims
)
:
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
binary
>
(
dev_ctx
,
engine
,
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
x
->
dims
()),
...
...
@@ -659,24 +660,12 @@ class BroadcastDataMKLDNNHandler
y
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Y tensor."
));
auto
src1_tz
=
framework
::
vectorize
(
y
->
dims
());
const
auto
src0_tz
=
framework
::
vectorize
(
x
->
dims
());
// GetExpectedKernelType checks if smaller vector is a subvector with all
// the dims in correct order on the rightmost part of the bigger vector,
// i.e. a correct vector for broadcasting:
// x = 5, 7, 3, 2, 4, 8
// y = 4, 8
src1_tz
.
reserve
(
src0_tz
.
size
());
for
(
size_t
i
=
src1_tz
.
size
();
i
<
src0_tz
.
size
();
++
i
)
{
src1_tz
.
insert
(
src1_tz
.
begin
(),
1L
);
}
const
auto
src0_md
=
dnnl
::
memory
::
desc
(
src0_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
const
auto
src1_md
=
dnnl
::
memory
::
desc
(
src1_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
input_dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
dnnl
::
primitive_attr
attributes
;
attributes
.
set_scales
(
DNNL_ARG_SRC_0
,
0
,
{
scale_x
});
...
...
@@ -711,7 +700,7 @@ class ReductionMKLDNNHandler
const
mkldnn
::
engine
engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
x
,
const
Tensor
*
y
,
const
std
::
string
&
uniq_name
,
std
::
vector
<
int64_t
>
output_dims
)
std
::
vector
<
int64_t
>
y_tz
)
:
platform
::
MKLDNNHandlerT
<
T
,
dnnl
::
reduction
>
(
dev_ctx
,
engine
,
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
x
->
dims
()),
...
...
@@ -725,14 +714,14 @@ class ReductionMKLDNNHandler
x
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for X tensor."
));
const
auto
src
_tz
=
framework
::
vectorize
(
x
->
dims
());
const
auto
x
_tz
=
framework
::
vectorize
(
x
->
dims
());
const
auto
src
_md
=
dnnl
::
memory
::
desc
(
src
_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
const
auto
dst_md
=
memory
::
desc
(
output_dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
const
auto
x
_md
=
dnnl
::
memory
::
desc
(
x
_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
const
auto
y_md
=
memory
::
desc
(
y_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
x
->
format
());
this
->
AcquireForwardPrimitiveDescriptor
(
algo
,
src_md
,
dst
_md
,
p
,
eps
);
this
->
AcquireForwardPrimitiveDescriptor
(
algo
,
x_md
,
y
_md
,
p
,
eps
);
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录