pool_op.cc 24.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16

17
#include <unordered_map>
18 19 20 21 22 23
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
24 25 26 27

namespace paddle {
namespace operators {

28 29
int PoolOutputSize(int input_size, int filter_size, int padding_1,
                   int padding_2, int stride, bool ceil_mode) {
30 31
  int output_size;
  if (!ceil_mode) {
32 33
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
34 35
  } else {
    output_size =
36 37 38
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
39
  }
40 41
  PADDLE_ENFORCE_GT(
      output_size, 0,
42 43 44 45 46 47
      platform::errors::InvalidArgument(
          "the output size must be greater than 0. But received: "
          "output_size = %d due to the settings of input_size(%d), "
          "padding(%d,%d), "
          "k_size(%d) and stride(%d). Please check again!",
          output_size, input_size, padding_1, padding_2, filter_size, stride));
48 49 50
  return output_size;
}

C
chengduo 已提交
51
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
52 53 54 55 56 57
  PADDLE_ENFORCE_EQ(
      ctx->HasInput("X"), true,
      platform::errors::NotFound("Input(X) of Pool operator is not found."));
  PADDLE_ENFORCE_EQ(
      ctx->HasOutput("Out"), true,
      platform::errors::NotFound("Output(Out) of Pool operator is not found."));
58

C
chengduoZH 已提交
59
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
60 61 62
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
63
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
64
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
65 66 67 68
  bool global_pooling = ctx->Attrs().Get<bool>("global_pooling");
  std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
69

70
  auto in_x_dims = ctx->GetInputDim("X");
71 72
  PADDLE_ENFORCE_EQ(
      in_x_dims.size() == 4 || in_x_dims.size() == 5, true,
73 74 75 76
      platform::errors::InvalidArgument(
          "the input of Op(pool) should be 4-D or 5-D Tensor. But "
          "received: %u-D Tensor and it's shape is [%s].",
          in_x_dims.size(), in_x_dims));
77 78 79

  PADDLE_ENFORCE_EQ(
      in_x_dims.size() - ksize.size(), 2U,
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
      platform::errors::InvalidArgument(
          "the dimension of input minus the size of "
          "Attr(ksize) must be euqal to 2 in Op(pool). "
          "But received: the dimension of input minus the size "
          "of Attr(ksize) is %d, the "
          "input's dimension is %d, the shape of input "
          "is [%s], the Attr(ksize)'s size is %d, the Attr(ksize) is [%s].",
          in_x_dims.size() - ksize.size(), in_x_dims.size(), in_x_dims,
          ksize.size(), framework::make_ddim(ksize)));

  PADDLE_ENFORCE_EQ(
      ksize.size(), strides.size(),
      platform::errors::InvalidArgument(
          "the size of Attr(ksize) and Attr(strides) in "
          "Op(pool) must be equal. "
          "But received: Attr(ksize)'s size is %d, Attr(strides)'s "
          "size is %d, Attr(ksize) is [%s], Attr(strides)is [%s].",
          ksize.size(), strides.size(), framework::make_ddim(ksize),
          framework::make_ddim(strides)));
99

100 101 102 103
  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

  // update paddings if "SAME" or global_pooling
  framework::DDim data_dims;
  if (channel_last) {
    data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
  } else {
    data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
  }
  UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                data_dims, strides, ksize);

  if (global_pooling) {
    UpdateKsize(&ksize, data_dims);
  }

  std::vector<int64_t> output_shape;
120 121 122
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
123
    for (int i = 0; i < data_dims.size(); ++i) {
124
      if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) {
125
        output_shape.push_back(data_dims[i]);
K
Kaipeng Deng 已提交
126
      } else {
127 128 129
        output_shape.push_back(
            PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i],
                           paddings[2 * i + 1], strides[i], ceil_mode));
K
Kaipeng Deng 已提交
130
      }
131
    }
132
  }
133 134 135 136 137 138 139 140 141 142

  // output_N = input_N
  output_shape.insert(output_shape.begin(), in_x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(in_x_dims[in_x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, in_x_dims[1]);
  }

143
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
144
  ctx->ShareLoD("X", "Out");
145 146
}

147
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
148
    const framework::ExecutionContext& ctx) const {
149
  framework::LibraryType library_{framework::LibraryType::kPlain};
150
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
151
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
152
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
153

C
chengduoZH 已提交
154
#ifdef PADDLE_WITH_CUDA
155 156
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
157 158
  }
#endif
159 160
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
161
      this->CanMKLDNNBeUsed(ctx, data_type)) {
162
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
163
    layout_ = framework::DataLayout::kMKLDNN;
164
  }
165
#endif
166

167
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout_, library_);
168 169
}

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
framework::OpKernelType PoolOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

C
chengduo 已提交
192
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
193 194 195
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    platform::errors::NotFound(
                        "Input(X) of Pool Gradoperator is not found."));
196
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
197 198
                    platform::errors::NotFound(
                        "Input(X@GRAD) of Pool Gradoperator is not found."));
199 200 201
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

202
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
203
    const framework::ExecutionContext& ctx) const {
204
  framework::LibraryType library_{framework::LibraryType::kPlain};
205
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
206
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
207
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
208

C
chengduoZH 已提交
209
#ifdef PADDLE_WITH_CUDA
210 211
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
212 213
  }
#endif
214 215
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
216
      this->CanMKLDNNBeUsed(ctx, input_data_type)) {
217
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
218
    layout_ = framework::DataLayout::kMKLDNN;
219
  }
220
#endif
221

K
Kexin Zhao 已提交
222 223
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
224 225
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
framework::OpKernelType PoolOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   framework::StringToDataLayout(data_format));
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
244
void Pool2dOpMaker::Make() {
245 246
  AddInput(
      "X",
C
chengduoZH 已提交
247
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
248 249 250
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
251
  AddOutput("Out",
K
kexinzhao 已提交
252 253 254 255
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
256
            "and W is the width of the feature.");
257

C
chengduoZH 已提交
258
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
259 260
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
261
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
262
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
263 264
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
265
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
266 267
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
268
  // TypedAttrChecker don't support vector type.)
269 270
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
271 272 273
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False.")
274
      .SetDefault(false);
K
kexinzhao 已提交
275 276 277
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
278 279
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
280 281 282
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
283 284
      "(vector<int>, default {0,0}), paddings(height_top, height_bottom, "
      "width_left, wifth_right) of pooling operator."
285
      "If global_pooling = true, paddings and kernel size will be ignored.")
286
      .SetDefault({0, 0});
287 288
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
289
      "(bool) When true, will exclude the zero-padding in the "
290
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
291 292
      "is only used when pooling_type is avg. The default is True. "
      "Default True.")
293
      .SetDefault(true);
294 295
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
296
      "(bool) When true, will perform adaptive pooling instead, "
297 298
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
299 300
      "pooling in each grid area to get output pooling value. "
      "Default False.")
301 302
      .SetDefault(false);

303 304
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
305
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
306
      .SetDefault(false);
307 308
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
309
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
310
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
311
      "the floor function will be used. Default False")
312
      .SetDefault(false);
313
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
314
                "(bool) Only used in mkldnn kernel. Default False")
315
      .SetDefault(false);
316 317 318 319
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
320
      .SetDefault(false);
321 322 323 324 325
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
326 327 328 329 330 331
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
332
      .SetDefault("NCHW");
333 334 335 336 337
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

338 339 340 341 342 343
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
344
  // TODO(dzhwinter): need to registered layout transform function
345 346

  AddComment(R"DOC(
K
Kaipeng Deng 已提交
347 348 349
This operation calculates the pooling output based on
the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
K
kexinzhao 已提交
350
number of channels, H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
351
Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
C
fix doc  
chengduoZH 已提交
352
These two elements represent height and width, respectively.
C
chengduoZH 已提交
353 354
The input(X) size and output(Out) size may be different.

355
Example:
F
fengjiayi 已提交
356

C
chengduoZH 已提交
357
  Input:
F
fengjiayi 已提交
358

K
kexinzhao 已提交
359
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
360

C
chengduoZH 已提交
361
  Output:
F
fengjiayi 已提交
362

K
kexinzhao 已提交
363
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
  For pool_padding = "SAME":
       $$
       H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]}
       $$

  For pool_padding = "VALID":
       $$
       H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]}
       $$

381 382
  For ceil_mode = false:
       $$
383
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1
F
fengjiayi 已提交
384 385
       $$
       $$
386
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1
K
kexinzhao 已提交
387
       $$
388

389 390
  For ceil_mode = true:
       $$
391
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
392 393
       $$
       $$
394
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1
395
       $$
K
kexinzhao 已提交
396

397
  For exclusive = false:
398
       $$
399
       hstart = i * strides[0] - pad_height_top
400 401 402 403 404
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
405
       wstart = j * strides[1] - pad_width_left
406 407 408 409 410 411 412
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
413

414
  For exclusive = true:
415
       $$
416
       hstart = max(0, i * strides[0] - pad_height_top)
417 418 419 420 421
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
422
       wstart = max(0, j * strides[1] - pad_width_left)
423 424 425 426 427 428 429
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
430

431
)DOC");
432 433
}

C
chengduo 已提交
434 435
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
436
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
437
      const override {
438 439
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
440 441 442
  }
};

Y
Yu Yang 已提交
443
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
444 445
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
446 447
           "The format of input tensor is NCDHW or NDHWC, where N is batch "
           "size, C is "
K
kexinzhao 已提交
448 449 450
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
451
  AddOutput("Out",
C
chengduoZH 已提交
452
            "(Tensor) The output tensor of pooling operator."
453
            "The format of output tensor is also NCDHW or NDHWC, "
K
kexinzhao 已提交
454 455
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
456
            "width of the feature, respectively.");
457

C
chengduoZH 已提交
458
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
459
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
460
                       "and \"avg\" for average-pooling.")
461
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
462 463 464 465
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
466
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
467 468
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
469
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
470 471
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
472 473 474
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False")
475
      .SetDefault(false);
K
kexinzhao 已提交
476 477 478 479
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
480 481
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
482 483
  AddAttr<std::vector<int>>(
      "paddings",
484 485 486 487
      "(vector<int>, default {0,0,0}), paddings(pad_depth_front, "
      "pad_depth_back, "
      "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right"
      ") of pooling operator. "
C
chengduoZH 已提交
488
      "If global_pooling = true, ksize and paddings will be ignored.")
489 490
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
491 492
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
493
      "(bool) When true, will exclude the zero-padding in the "
494
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
495 496
      "is only used when pooling_type is avg. The default is True. "
      "Default True")
497
      .SetDefault(true);
498 499
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
500
      "(bool) When true, will perform adaptive pooling instead, "
501 502
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
503 504
      "pooling in each grid area to get output pooling value. "
      "Default False")
505
      .SetDefault(false);
506

507 508
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
509
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
510
      .SetDefault(false);
511 512
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
513
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
514
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
515
      "the floor function will be used. Default False")
516
      .SetDefault(false);
517
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
518
                "(bool) Only used in mkldnn kernel. Default False")
519
      .SetDefault(false);
520 521
  AddAttr<std::string>(
      "data_format",
522 523 524
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
525
      "the input will be transformed automatically. ")
526 527 528 529 530 531 532
      .SetDefault("NCDHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
533 534
  // TODO(dzhwinter): need to registered layout transform function

535
  AddComment(R"DOC(
K
Kaipeng Deng 已提交
536 537
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
538
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
K
kexinzhao 已提交
539
size, C is the number of channels, and D, H and W are the depth, height and
K
Kaipeng Deng 已提交
540 541
width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
hold three integer elements. These three elements represent depth, height and
K
kexinzhao 已提交
542
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
543 544 545

Example:
  Input:
K
kexinzhao 已提交
546
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
547
  Output:
K
kexinzhao 已提交
548
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

  For pool_padding = "SAME":
       $$
       D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]}
       $$

  For pool_padding = "VALID":
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]}
       $$

572
  For ceil_mode = false:
573
       $$
574
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1
575 576
       $$
       $$
577
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1
578 579
       $$
       $$
580
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1
581
       $$
582
  For ceil_mode = true:
583
       $$
584
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1
585 586
       $$
       $$
587
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1
588 589
       $$
       $$
590
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1
591
       $$
D
dengkaipeng 已提交
592

593
  For exclusive = false:
594
       $$
595
       dstart = i * strides[0] - pad_depth_front
596 597 598 599 600
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
601
       hstart = j * strides[1] - pad_height_top
602 603 604 605 606
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
607
       wstart = k * strides[2] -  pad_width_left
608 609 610 611 612 613 614
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
615

616
  For exclusive = true:
617
       $$
618
       dstart = max(0, i * strides[0] - pad_depth_front)
619 620 621 622 623
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
624 625 626
       hstart = max(0, j * strides[1] - pad_height_top)
       $$
       $$
627 628 629
       hend = min(H, hstart + ksize[1])
       $$
       $$
630
       wstart = max(0, k * strides[2] - pad_width_left)
631 632 633 634 635 636 637
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
638

639
)DOC");
640
}
641 642 643 644 645
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
646 647 648 649
REGISTER_OPERATOR(
    pool2d, ops::PoolOp, ops::Pool2dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
650
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
651

Q
QI JUN 已提交
652 653 654 655 656
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
657
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
658

H
hong 已提交
659 660 661 662
REGISTER_OPERATOR(
    pool3d, ops::PoolOp, ops::Pool3dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
663
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
664

Q
QI JUN 已提交
665 666 667 668 669 670
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);