pool_op.cc 23.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16
#include <unordered_map>
17 18 19 20 21 22
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27 28
int PoolOutputSize(int input_size, int filter_size, int padding_1,
                   int padding_2, int stride, bool ceil_mode) {
29 30
  int output_size;
  if (!ceil_mode) {
31 32
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
33 34
  } else {
    output_size =
35 36 37
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
38
  }
39 40
  PADDLE_ENFORCE_GT(
      output_size, 0,
41 42 43 44
      "ShapeError: the output size must be greater than 0. But received: "
      "output_size = %d due to the settings of input_size(%d), padding(%d,%d), "
      "k_size(%d) and stride(%d). Please check again!",
      output_size, input_size, padding_1, padding_2, filter_size, stride);
45 46 47
  return output_size;
}

C
chengduo 已提交
48
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
49 50 51 52
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                    "Out(Output) of Pooling should not be null.");
53

C
chengduoZH 已提交
54
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
55 56 57
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
58
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
59
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
60 61 62 63
  bool global_pooling = ctx->Attrs().Get<bool>("global_pooling");
  std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
64

65
  auto in_x_dims = ctx->GetInputDim("X");
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  PADDLE_ENFORCE_EQ(
      in_x_dims.size() == 4 || in_x_dims.size() == 5, true,
      "ShapeError: the input of Op(pool) should be 4-D or 5-D Tensor. But "
      "received: %u-D Tensor and it's shape is [%s].",
      in_x_dims.size(), in_x_dims);

  PADDLE_ENFORCE_EQ(
      in_x_dims.size() - ksize.size(), 2U,
      "ShapeError: the dimension of input minus the size of "
      "Attr(ksize) must be euqal to 2 in Op(pool). "
      "But received: the dimension of input minus the size "
      "of Attr(ksize) is %d, the "
      "input's dimension is %d, the shape of input "
      "is [%s], the Attr(ksize)'s size is %d, the Attr(ksize) is [%s].",
      in_x_dims.size() - ksize.size(), in_x_dims.size(), in_x_dims,
      ksize.size(), framework::make_ddim(ksize));
82 83

  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
84 85 86 87 88 89
                    "ShapeError: the size of Attr(ksize) and Attr(strides) in "
                    "Op(pool) must be equal. "
                    "But received: Attr(ksize)'s size is %d, Attr(strides)'s "
                    "size is %d, Attr(ksize) is [%s], Attr(strides)is [%s].",
                    ksize.size(), strides.size(), framework::make_ddim(ksize),
                    framework::make_ddim(strides));
90

91 92 93 94
  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  // update paddings if "SAME" or global_pooling
  framework::DDim data_dims;
  if (channel_last) {
    data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
  } else {
    data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
  }
  UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                data_dims, strides, ksize);

  if (global_pooling) {
    UpdateKsize(&ksize, data_dims);
  }

  std::vector<int64_t> output_shape;
111 112 113
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
114
    for (int i = 0; i < data_dims.size(); ++i) {
115
      if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) {
116
        output_shape.push_back(data_dims[i]);
K
Kaipeng Deng 已提交
117
      } else {
118 119 120
        output_shape.push_back(
            PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i],
                           paddings[2 * i + 1], strides[i], ceil_mode));
K
Kaipeng Deng 已提交
121
      }
122
    }
123
  }
124 125 126 127 128 129 130 131 132 133

  // output_N = input_N
  output_shape.insert(output_shape.begin(), in_x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(in_x_dims[in_x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, in_x_dims[1]);
  }

134
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
135
  ctx->ShareLoD("X", "Out");
136 137
}

138
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
139
    const framework::ExecutionContext& ctx) const {
140
  framework::LibraryType library_{framework::LibraryType::kPlain};
141
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
142 143
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
144
#ifdef PADDLE_WITH_CUDA
145 146
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
147 148
  }
#endif
149 150 151 152
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
153
    layout_ = framework::DataLayout::kMKLDNN;
154
  }
155
#endif
156

157 158 159
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
      layout_, library_);
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
framework::OpKernelType PoolOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

C
chengduo 已提交
184
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
185 186 187
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) must not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                    "Input(X@GRAD) should not be null.");
188 189 190
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

191
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
192
    const framework::ExecutionContext& ctx) const {
193
  framework::LibraryType library_{framework::LibraryType::kPlain};
194
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
195 196
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
197
#ifdef PADDLE_WITH_CUDA
198 199
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
200 201
  }
#endif
202 203 204
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
205 206 207 208 209 210
    // TODO(jczaja): Add support for NHWC
    const std::string data_format = ctx.Attr<std::string>("data_format");
    PADDLE_ENFORCE_NE(
        data_format, "NHWC",
        platform::errors::Unimplemented(
            "Pool MKLDNN grad does not support NHWC data format yet"));
211
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
212
    layout_ = framework::DataLayout::kMKLDNN;
213
  }
214
#endif
215

216
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
K
Kexin Zhao 已提交
217 218 219 220 221 222
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
223 224
}

Y
Yu Yang 已提交
225
void Pool2dOpMaker::Make() {
226 227
  AddInput(
      "X",
C
chengduoZH 已提交
228
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
229 230 231
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
232
  AddOutput("Out",
K
kexinzhao 已提交
233 234 235 236
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
237
            "and W is the width of the feature.");
238

C
chengduoZH 已提交
239
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
240 241
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
242
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
243
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
244 245
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
246
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
247 248
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
249
  // TypedAttrChecker don't support vector type.)
250 251
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
252 253 254
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False.")
255
      .SetDefault(false);
K
kexinzhao 已提交
256 257 258
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
259 260
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
261 262 263
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
264 265
      "(vector<int>, default {0,0}), paddings(height_top, height_bottom, "
      "width_left, wifth_right) of pooling operator."
266
      "If global_pooling = true, paddings and kernel size will be ignored.")
267
      .SetDefault({0, 0});
268 269
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
270
      "(bool) When true, will exclude the zero-padding in the "
271
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
272 273
      "is only used when pooling_type is avg. The default is True. "
      "Default True.")
274
      .SetDefault(true);
275 276
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
277
      "(bool) When true, will perform adaptive pooling instead, "
278 279
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
280 281
      "pooling in each grid area to get output pooling value. "
      "Default False.")
282 283
      .SetDefault(false);

284 285
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
286
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
287
      .SetDefault(false);
288 289
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
290
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
291
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
292
      "the floor function will be used. Default False")
293
      .SetDefault(false);
294
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
295
                "(bool) Only used in mkldnn kernel. Default False")
296
      .SetDefault(false);
297
  AddAttr<bool>("use_quantizer",
K
Kaipeng Deng 已提交
298
                "(bool) "
299 300
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
K
Kaipeng Deng 已提交
301
                "Only used on CPU. Default False")
302
      .SetDefault(false);
303 304 305 306 307 308
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
309
      .SetDefault("NCHW");
310 311 312 313 314
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

315 316 317 318 319 320
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
321
  // TODO(dzhwinter): need to registered layout transform function
322 323

  AddComment(R"DOC(
K
Kaipeng Deng 已提交
324 325 326
This operation calculates the pooling output based on
the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
K
kexinzhao 已提交
327
number of channels, H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
328
Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
C
fix doc  
chengduoZH 已提交
329
These two elements represent height and width, respectively.
C
chengduoZH 已提交
330 331
The input(X) size and output(Out) size may be different.

332
Example:
F
fengjiayi 已提交
333

C
chengduoZH 已提交
334
  Input:
F
fengjiayi 已提交
335

K
kexinzhao 已提交
336
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
337

C
chengduoZH 已提交
338
  Output:
F
fengjiayi 已提交
339

K
kexinzhao 已提交
340
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  For pool_padding = "SAME":
       $$
       H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]}
       $$

  For pool_padding = "VALID":
       $$
       H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]}
       $$

358 359
  For ceil_mode = false:
       $$
360
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1
F
fengjiayi 已提交
361 362
       $$
       $$
363
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1
K
kexinzhao 已提交
364
       $$
365

366 367
  For ceil_mode = true:
       $$
368
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
369 370
       $$
       $$
371
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1
372
       $$
K
kexinzhao 已提交
373

374
  For exclusive = false:
375
       $$
376
       hstart = i * strides[0] - pad_height_top
377 378 379 380 381
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
382
       wstart = j * strides[1] - pad_width_left
383 384 385 386 387 388 389
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
390

391
  For exclusive = true:
392
       $$
393
       hstart = max(0, i * strides[0] - pad_height_top)
394 395 396 397 398
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
399
       wstart = max(0, j * strides[1] - pad_width_left)
400 401 402 403 404 405 406
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
407

408
)DOC");
409 410
}

C
chengduo 已提交
411 412 413 414 415 416 417 418
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

Y
Yu Yang 已提交
419
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
420 421
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
422 423
           "The format of input tensor is NCDHW or NDHWC, where N is batch "
           "size, C is "
K
kexinzhao 已提交
424 425 426
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
427
  AddOutput("Out",
C
chengduoZH 已提交
428
            "(Tensor) The output tensor of pooling operator."
429
            "The format of output tensor is also NCDHW or NDHWC, "
K
kexinzhao 已提交
430 431
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
432
            "width of the feature, respectively.");
433

C
chengduoZH 已提交
434
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
435
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
436
                       "and \"avg\" for average-pooling.")
437
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
438 439 440 441
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
442
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
443 444
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
445
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
446 447
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
448 449 450
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False")
451
      .SetDefault(false);
K
kexinzhao 已提交
452 453 454 455
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
456 457
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
458 459
  AddAttr<std::vector<int>>(
      "paddings",
460 461 462 463
      "(vector<int>, default {0,0,0}), paddings(pad_depth_front, "
      "pad_depth_back, "
      "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right"
      ") of pooling operator. "
C
chengduoZH 已提交
464
      "If global_pooling = true, ksize and paddings will be ignored.")
465 466
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
467 468
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
469
      "(bool) When true, will exclude the zero-padding in the "
470
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
471 472
      "is only used when pooling_type is avg. The default is True. "
      "Default True")
473
      .SetDefault(true);
474 475
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
476
      "(bool) When true, will perform adaptive pooling instead, "
477 478
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
479 480
      "pooling in each grid area to get output pooling value. "
      "Default False")
481
      .SetDefault(false);
482

483 484
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
485
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
486
      .SetDefault(false);
487 488
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
489
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
490
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
491
      "the floor function will be used. Default False")
492
      .SetDefault(false);
493
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
494
                "(bool) Only used in mkldnn kernel. Default False")
495
      .SetDefault(false);
496 497
  AddAttr<std::string>(
      "data_format",
498 499 500
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
501
      "the input will be transformed automatically. ")
502 503 504 505 506 507 508
      .SetDefault("NCDHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
509 510
  // TODO(dzhwinter): need to registered layout transform function

511
  AddComment(R"DOC(
K
Kaipeng Deng 已提交
512 513
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
514
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
K
kexinzhao 已提交
515
size, C is the number of channels, and D, H and W are the depth, height and
K
Kaipeng Deng 已提交
516 517
width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
hold three integer elements. These three elements represent depth, height and
K
kexinzhao 已提交
518
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
519 520 521

Example:
  Input:
K
kexinzhao 已提交
522
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
523
  Output:
K
kexinzhao 已提交
524
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

  For pool_padding = "SAME":
       $$
       D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]}
       $$

  For pool_padding = "VALID":
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]}
       $$

548
  For ceil_mode = false:
549
       $$
550
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1
551 552
       $$
       $$
553
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1
554 555
       $$
       $$
556
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1
557
       $$
558
  For ceil_mode = true:
559
       $$
560
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1
561 562
       $$
       $$
563
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1
564 565
       $$
       $$
566
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1
567
       $$
D
dengkaipeng 已提交
568

569
  For exclusive = false:
570
       $$
571
       dstart = i * strides[0] - pad_depth_front
572 573 574 575 576
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
577
       hstart = j * strides[1] - pad_height_top
578 579 580 581 582
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
583
       wstart = k * strides[2] -  pad_width_left
584 585 586 587 588 589 590
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
591

592
  For exclusive = true:
593
       $$
594
       dstart = max(0, i * strides[0] - pad_depth_front)
595 596 597 598 599
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
600 601 602
       hstart = max(0, j * strides[1] - pad_height_top)
       $$
       $$
603 604 605
       hend = min(H, hstart + ksize[1])
       $$
       $$
606
       wstart = max(0, k * strides[2] - pad_width_left)
607 608 609 610 611 612 613
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
614

615
)DOC");
616
}
617 618 619 620 621
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
622 623 624 625
REGISTER_OPERATOR(
    pool2d, ops::PoolOp, ops::Pool2dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
626
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
627

Q
QI JUN 已提交
628 629 630 631 632
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
633
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
634

H
hong 已提交
635 636 637 638
REGISTER_OPERATOR(
    pool3d, ops::PoolOp, ops::Pool3dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
639
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
640

Q
QI JUN 已提交
641 642 643 644 645 646
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);