pool_op.cc 23.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16
#include <unordered_map>
17 18 19 20 21 22
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27 28
int PoolOutputSize(int input_size, int filter_size, int padding_1,
                   int padding_2, int stride, bool ceil_mode) {
29 30
  int output_size;
  if (!ceil_mode) {
31 32
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
33 34
  } else {
    output_size =
35 36 37
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
38
  }
39 40
  PADDLE_ENFORCE_GT(
      output_size, 0,
41 42 43 44
      "ShapeError: the output size must be greater than 0. But received: "
      "output_size = %d due to the settings of input_size(%d), padding(%d,%d), "
      "k_size(%d) and stride(%d). Please check again!",
      output_size, input_size, padding_1, padding_2, filter_size, stride);
45 46 47
  return output_size;
}

C
chengduo 已提交
48
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
49 50 51 52
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                    "Out(Output) of Pooling should not be null.");
53

C
chengduoZH 已提交
54
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
55 56 57
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
58
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
59
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
60 61 62 63
  bool global_pooling = ctx->Attrs().Get<bool>("global_pooling");
  std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
64

65
  auto in_x_dims = ctx->GetInputDim("X");
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  PADDLE_ENFORCE_EQ(
      in_x_dims.size() == 4 || in_x_dims.size() == 5, true,
      "ShapeError: the input of Op(pool) should be 4-D or 5-D Tensor. But "
      "received: %u-D Tensor and it's shape is [%s].",
      in_x_dims.size(), in_x_dims);

  PADDLE_ENFORCE_EQ(
      in_x_dims.size() - ksize.size(), 2U,
      "ShapeError: the dimension of input minus the size of "
      "Attr(ksize) must be euqal to 2 in Op(pool). "
      "But received: the dimension of input minus the size "
      "of Attr(ksize) is %d, the "
      "input's dimension is %d, the shape of input "
      "is [%s], the Attr(ksize)'s size is %d, the Attr(ksize) is [%s].",
      in_x_dims.size() - ksize.size(), in_x_dims.size(), in_x_dims,
      ksize.size(), framework::make_ddim(ksize));
82 83

  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
84 85 86 87 88 89
                    "ShapeError: the size of Attr(ksize) and Attr(strides) in "
                    "Op(pool) must be equal. "
                    "But received: Attr(ksize)'s size is %d, Attr(strides)'s "
                    "size is %d, Attr(ksize) is [%s], Attr(strides)is [%s].",
                    ksize.size(), strides.size(), framework::make_ddim(ksize),
                    framework::make_ddim(strides));
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

  // update paddings if "SAME" or global_pooling
  framework::DDim data_dims;
  if (channel_last) {
    data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
  } else {
    data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
  }
  UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                data_dims, strides, ksize);

  if (global_pooling) {
    UpdateKsize(&ksize, data_dims);
  }

  std::vector<int64_t> output_shape;
108 109 110
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
111
    for (int i = 0; i < data_dims.size(); ++i) {
112
      if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) {
113
        output_shape.push_back(data_dims[i]);
K
Kaipeng Deng 已提交
114
      } else {
115 116 117
        output_shape.push_back(
            PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i],
                           paddings[2 * i + 1], strides[i], ceil_mode));
K
Kaipeng Deng 已提交
118
      }
119
    }
120
  }
121 122 123 124 125 126 127 128 129 130

  // output_N = input_N
  output_shape.insert(output_shape.begin(), in_x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(in_x_dims[in_x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, in_x_dims[1]);
  }

131
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
132
  ctx->ShareLoD("X", "Out");
133 134
}

135
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
136
    const framework::ExecutionContext& ctx) const {
137
  framework::LibraryType library_{framework::LibraryType::kPlain};
138
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
139 140
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
141
#ifdef PADDLE_WITH_CUDA
142 143
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
144 145
  }
#endif
146 147 148
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
149 150 151 152 153 154
    // TODO(jczaja): Add support for NHWC
    const std::string data_format = ctx.Attr<std::string>("data_format");
    PADDLE_ENFORCE_NE(
        data_format, "NHWC",
        platform::errors::Unimplemented(
            "Pool MKLDNN grad does not support NHWC data format yet"));
155
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
156
    layout_ = framework::DataLayout::kMKLDNN;
157
  }
158
#endif
159

160 161 162
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
      layout_, library_);
163 164
}

C
chengduo 已提交
165
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
166 167 168
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) must not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                    "Input(X@GRAD) should not be null.");
169 170 171
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

172
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
173
    const framework::ExecutionContext& ctx) const {
174
  framework::LibraryType library_{framework::LibraryType::kPlain};
175
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
176 177
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
178
#ifdef PADDLE_WITH_CUDA
179 180
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
181 182
  }
#endif
183 184 185
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
186 187 188 189 190 191
    // TODO(jczaja): Add support for NHWC
    const std::string data_format = ctx.Attr<std::string>("data_format");
    PADDLE_ENFORCE_NE(
        data_format, "NHWC",
        platform::errors::Unimplemented(
            "Pool MKLDNN grad does not support NHWC data format yet"));
192
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
193
    layout_ = framework::DataLayout::kMKLDNN;
194
  }
195
#endif
196

197
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
K
Kexin Zhao 已提交
198 199 200 201 202 203
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
204 205
}

Y
Yu Yang 已提交
206
void Pool2dOpMaker::Make() {
207 208
  AddInput(
      "X",
C
chengduoZH 已提交
209
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
210 211 212
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
213
  AddOutput("Out",
K
kexinzhao 已提交
214 215 216 217
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
218
            "and W is the width of the feature.");
219

C
chengduoZH 已提交
220
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
221 222
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
223
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
224
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
225 226
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
227
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
228 229
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
230
  // TypedAttrChecker don't support vector type.)
231 232
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
233 234 235
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False.")
236
      .SetDefault(false);
K
kexinzhao 已提交
237 238 239
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
240 241
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
242 243 244
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
245 246
      "(vector<int>, default {0,0}), paddings(height_top, height_bottom, "
      "width_left, wifth_right) of pooling operator."
247
      "If global_pooling = true, paddings and kernel size will be ignored.")
248
      .SetDefault({0, 0});
249 250
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
251
      "(bool) When true, will exclude the zero-padding in the "
252
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
253 254
      "is only used when pooling_type is avg. The default is True. "
      "Default True.")
255
      .SetDefault(true);
256 257
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
258
      "(bool) When true, will perform adaptive pooling instead, "
259 260
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
261 262
      "pooling in each grid area to get output pooling value. "
      "Default False.")
263 264
      .SetDefault(false);

265 266
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
267
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
268
      .SetDefault(false);
269 270
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
271
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
272
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
273
      "the floor function will be used. Default False")
274
      .SetDefault(false);
275
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
276
                "(bool) Only used in mkldnn kernel. Default False")
277
      .SetDefault(false);
278
  AddAttr<bool>("use_quantizer",
K
Kaipeng Deng 已提交
279
                "(bool) "
280 281
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
K
Kaipeng Deng 已提交
282
                "Only used on CPU. Default False")
283
      .SetDefault(false);
284 285 286 287 288 289
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
290
      .SetDefault("NCHW");
291 292 293 294 295
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

296 297 298 299 300 301
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
302
  // TODO(dzhwinter): need to registered layout transform function
303 304

  AddComment(R"DOC(
K
Kaipeng Deng 已提交
305 306 307
This operation calculates the pooling output based on
the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
K
kexinzhao 已提交
308
number of channels, H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
309
Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
C
fix doc  
chengduoZH 已提交
310
These two elements represent height and width, respectively.
C
chengduoZH 已提交
311 312
The input(X) size and output(Out) size may be different.

313
Example:
F
fengjiayi 已提交
314

C
chengduoZH 已提交
315
  Input:
F
fengjiayi 已提交
316

K
kexinzhao 已提交
317
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
318

C
chengduoZH 已提交
319
  Output:
F
fengjiayi 已提交
320

K
kexinzhao 已提交
321
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
322

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  For pool_padding = "SAME":
       $$
       H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]}
       $$

  For pool_padding = "VALID":
       $$
       H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]}
       $$

339 340
  For ceil_mode = false:
       $$
341
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1
F
fengjiayi 已提交
342 343
       $$
       $$
344
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1
K
kexinzhao 已提交
345
       $$
346

347 348
  For ceil_mode = true:
       $$
349
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
350 351
       $$
       $$
352
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1
353
       $$
K
kexinzhao 已提交
354

355
  For exclusive = false:
356
       $$
357
       hstart = i * strides[0] - pad_height_top
358 359 360 361 362
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
363
       wstart = j * strides[1] - pad_width_left
364 365 366 367 368 369 370
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
371

372
  For exclusive = true:
373
       $$
374
       hstart = max(0, i * strides[0] - pad_height_top)
375 376 377 378 379
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
380
       wstart = max(0, j * strides[1] - pad_width_left)
381 382 383 384 385 386 387
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
388

389
)DOC");
390 391
}

C
chengduo 已提交
392 393 394 395 396 397 398 399
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

Y
Yu Yang 已提交
400
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
401 402
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
403 404
           "The format of input tensor is NCDHW or NDHWC, where N is batch "
           "size, C is "
K
kexinzhao 已提交
405 406 407
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
408
  AddOutput("Out",
C
chengduoZH 已提交
409
            "(Tensor) The output tensor of pooling operator."
410
            "The format of output tensor is also NCDHW or NDHWC, "
K
kexinzhao 已提交
411 412
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
413
            "width of the feature, respectively.");
414

C
chengduoZH 已提交
415
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
416
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
417
                       "and \"avg\" for average-pooling.")
418
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
419 420 421 422
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
423
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
424 425
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
426
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
427 428
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
429 430 431
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False")
432
      .SetDefault(false);
K
kexinzhao 已提交
433 434 435 436
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
437 438
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
439 440
  AddAttr<std::vector<int>>(
      "paddings",
441 442 443 444
      "(vector<int>, default {0,0,0}), paddings(pad_depth_front, "
      "pad_depth_back, "
      "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right"
      ") of pooling operator. "
C
chengduoZH 已提交
445
      "If global_pooling = true, ksize and paddings will be ignored.")
446 447
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
448 449
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
450
      "(bool) When true, will exclude the zero-padding in the "
451
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
452 453
      "is only used when pooling_type is avg. The default is True. "
      "Default True")
454
      .SetDefault(true);
455 456
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
457
      "(bool) When true, will perform adaptive pooling instead, "
458 459
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
460 461
      "pooling in each grid area to get output pooling value. "
      "Default False")
462
      .SetDefault(false);
463

464 465
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
466
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
467
      .SetDefault(false);
468 469
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
470
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
471
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
472
      "the floor function will be used. Default False")
473
      .SetDefault(false);
474
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
475
                "(bool) Only used in mkldnn kernel. Default False")
476
      .SetDefault(false);
477 478
  AddAttr<std::string>(
      "data_format",
479 480 481
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
482
      "the input will be transformed automatically. ")
483 484 485 486 487 488 489
      .SetDefault("NCDHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
490 491
  // TODO(dzhwinter): need to registered layout transform function

492
  AddComment(R"DOC(
K
Kaipeng Deng 已提交
493 494
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
495
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
K
kexinzhao 已提交
496
size, C is the number of channels, and D, H and W are the depth, height and
K
Kaipeng Deng 已提交
497 498
width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
hold three integer elements. These three elements represent depth, height and
K
kexinzhao 已提交
499
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
500 501 502

Example:
  Input:
K
kexinzhao 已提交
503
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
504
  Output:
K
kexinzhao 已提交
505
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

  For pool_padding = "SAME":
       $$
       D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]}
       $$

  For pool_padding = "VALID":
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]}
       $$

529
  For ceil_mode = false:
530
       $$
531
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1
532 533
       $$
       $$
534
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1
535 536
       $$
       $$
537
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1
538
       $$
539
  For ceil_mode = true:
540
       $$
541
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1
542 543
       $$
       $$
544
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1
545 546
       $$
       $$
547
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1
548
       $$
D
dengkaipeng 已提交
549

550
  For exclusive = false:
551
       $$
552
       dstart = i * strides[0] - pad_depth_front
553 554 555 556 557
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
558
       hstart = j * strides[1] - pad_height_top
559 560 561 562 563
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
564
       wstart = k * strides[2] -  pad_width_left
565 566 567 568 569 570 571
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
572

573
  For exclusive = true:
574
       $$
575
       dstart = max(0, i * strides[0] - pad_depth_front)
576 577 578 579 580
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
581 582 583
       hstart = max(0, j * strides[1] - pad_height_top)
       $$
       $$
584 585 586
       hend = min(H, hstart + ksize[1])
       $$
       $$
587
       wstart = max(0, k * strides[2] - pad_width_left)
588 589 590 591 592 593 594
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
595

596
)DOC");
597
}
598 599 600 601 602
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
603 604 605 606
REGISTER_OPERATOR(
    pool2d, ops::PoolOp, ops::Pool2dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
607
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
608

Q
QI JUN 已提交
609 610 611 612 613
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
614
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
615

H
hong 已提交
616 617 618 619
REGISTER_OPERATOR(
    pool3d, ops::PoolOp, ops::Pool3dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
620
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
621

Q
QI JUN 已提交
622 623 624 625 626 627
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);