pool_op.cc 24.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16
#include <unordered_map>
17 18 19 20 21 22
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27 28
int PoolOutputSize(int input_size, int filter_size, int padding_1,
                   int padding_2, int stride, bool ceil_mode) {
29 30
  int output_size;
  if (!ceil_mode) {
31 32
    output_size =
        (input_size - filter_size + padding_1 + padding_2) / stride + 1;
33 34
  } else {
    output_size =
35 36 37
        (input_size - filter_size + padding_1 + padding_2 + stride - 1) /
            stride +
        1;
38
  }
39 40
  PADDLE_ENFORCE_GT(
      output_size, 0,
41 42 43 44
      "ShapeError: the output size must be greater than 0. But received: "
      "output_size = %d due to the settings of input_size(%d), padding(%d,%d), "
      "k_size(%d) and stride(%d). Please check again!",
      output_size, input_size, padding_1, padding_2, filter_size, stride);
45 46 47
  return output_size;
}

C
chengduo 已提交
48
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
49 50 51 52
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                    "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                    "Out(Output) of Pooling should not be null.");
53

C
chengduoZH 已提交
54
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
55 56 57
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
58
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
59
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
60 61 62 63
  bool global_pooling = ctx->Attrs().Get<bool>("global_pooling");
  std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
64

65
  auto in_x_dims = ctx->GetInputDim("X");
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  PADDLE_ENFORCE_EQ(
      in_x_dims.size() == 4 || in_x_dims.size() == 5, true,
      "ShapeError: the input of Op(pool) should be 4-D or 5-D Tensor. But "
      "received: %u-D Tensor and it's shape is [%s].",
      in_x_dims.size(), in_x_dims);

  PADDLE_ENFORCE_EQ(
      in_x_dims.size() - ksize.size(), 2U,
      "ShapeError: the dimension of input minus the size of "
      "Attr(ksize) must be euqal to 2 in Op(pool). "
      "But received: the dimension of input minus the size "
      "of Attr(ksize) is %d, the "
      "input's dimension is %d, the shape of input "
      "is [%s], the Attr(ksize)'s size is %d, the Attr(ksize) is [%s].",
      in_x_dims.size() - ksize.size(), in_x_dims.size(), in_x_dims,
      ksize.size(), framework::make_ddim(ksize));
82 83

  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
84 85 86 87 88 89
                    "ShapeError: the size of Attr(ksize) and Attr(strides) in "
                    "Op(pool) must be equal. "
                    "But received: Attr(ksize)'s size is %d, Attr(strides)'s "
                    "size is %d, Attr(ksize) is [%s], Attr(strides)is [%s].",
                    ksize.size(), strides.size(), framework::make_ddim(ksize),
                    framework::make_ddim(strides));
90

91 92 93 94
  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  // update paddings if "SAME" or global_pooling
  framework::DDim data_dims;
  if (channel_last) {
    data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
  } else {
    data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
  }
  UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                data_dims, strides, ksize);

  if (global_pooling) {
    UpdateKsize(&ksize, data_dims);
  }

  std::vector<int64_t> output_shape;
111 112 113
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
114
    for (int i = 0; i < data_dims.size(); ++i) {
115
      if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) {
116
        output_shape.push_back(data_dims[i]);
K
Kaipeng Deng 已提交
117
      } else {
118 119 120
        output_shape.push_back(
            PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i],
                           paddings[2 * i + 1], strides[i], ceil_mode));
K
Kaipeng Deng 已提交
121
      }
122
    }
123
  }
124 125 126 127 128 129 130 131 132 133

  // output_N = input_N
  output_shape.insert(output_shape.begin(), in_x_dims[0]);
  // output_C = input_C
  if (channel_last) {
    output_shape.push_back(in_x_dims[in_x_dims.size() - 1]);
  } else {
    output_shape.insert(output_shape.begin() + 1, in_x_dims[1]);
  }

134
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
135
  ctx->ShareLoD("X", "Out");
136 137
}

138
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
139
    const framework::ExecutionContext& ctx) const {
140
  framework::LibraryType library_{framework::LibraryType::kPlain};
141
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
142 143
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
144
#ifdef PADDLE_WITH_CUDA
145 146
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
147 148
  }
#endif
149 150 151 152
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
153
    layout_ = framework::DataLayout::kMKLDNN;
154
  }
155
#endif
156

157 158 159
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
      layout_, library_);
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
framework::OpKernelType PoolOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

C
chengduo 已提交
184
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
185 186 187
  PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) must not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                    "Input(X@GRAD) should not be null.");
188 189 190
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

191
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
192
    const framework::ExecutionContext& ctx) const {
193
  framework::LibraryType library_{framework::LibraryType::kPlain};
194
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
195 196
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
197
#ifdef PADDLE_WITH_CUDA
198 199
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
200 201
  }
#endif
202 203 204 205
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
206
    layout_ = framework::DataLayout::kMKLDNN;
207
  }
208
#endif
209

210
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
K
Kexin Zhao 已提交
211 212 213 214 215 216
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
217 218
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
framework::OpKernelType PoolOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  if ((expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(),
                                   framework::StringToDataLayout(data_format));
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
237
void Pool2dOpMaker::Make() {
238 239
  AddInput(
      "X",
C
chengduoZH 已提交
240
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
241 242 243
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
244
  AddOutput("Out",
K
kexinzhao 已提交
245 246 247 248
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
249
            "and W is the width of the feature.");
250

C
chengduoZH 已提交
251
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
252 253
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
254
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
255
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
256 257
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
258
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
259 260
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
261
  // TypedAttrChecker don't support vector type.)
262 263
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
264 265 266
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False.")
267
      .SetDefault(false);
K
kexinzhao 已提交
268 269 270
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
271 272
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
273 274 275
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
276 277
      "(vector<int>, default {0,0}), paddings(height_top, height_bottom, "
      "width_left, wifth_right) of pooling operator."
278
      "If global_pooling = true, paddings and kernel size will be ignored.")
279
      .SetDefault({0, 0});
280 281
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
282
      "(bool) When true, will exclude the zero-padding in the "
283
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
284 285
      "is only used when pooling_type is avg. The default is True. "
      "Default True.")
286
      .SetDefault(true);
287 288
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
289
      "(bool) When true, will perform adaptive pooling instead, "
290 291
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
292 293
      "pooling in each grid area to get output pooling value. "
      "Default False.")
294 295
      .SetDefault(false);

296 297
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
298
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
299
      .SetDefault(false);
300 301
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
302
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
303
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
304
      "the floor function will be used. Default False")
305
      .SetDefault(false);
306
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
307
                "(bool) Only used in mkldnn kernel. Default False")
308
      .SetDefault(false);
309 310 311 312
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
313
      .SetDefault(false);
314 315 316 317 318
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
      .InEnum({"float32", "int8", "bfloat16"});
319 320 321 322 323 324
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
325
      .SetDefault("NCHW");
326 327 328 329 330
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

331 332 333 334 335 336
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
337
  // TODO(dzhwinter): need to registered layout transform function
338 339

  AddComment(R"DOC(
K
Kaipeng Deng 已提交
340 341 342
This operation calculates the pooling output based on
the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
K
kexinzhao 已提交
343
number of channels, H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
344
Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
C
fix doc  
chengduoZH 已提交
345
These two elements represent height and width, respectively.
C
chengduoZH 已提交
346 347
The input(X) size and output(Out) size may be different.

348
Example:
F
fengjiayi 已提交
349

C
chengduoZH 已提交
350
  Input:
F
fengjiayi 已提交
351

K
kexinzhao 已提交
352
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
353

C
chengduoZH 已提交
354
  Output:
F
fengjiayi 已提交
355

K
kexinzhao 已提交
356
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
  For pool_padding = "SAME":
       $$
       H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]}
       $$

  For pool_padding = "VALID":
       $$
       H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]}
       $$

374 375
  For ceil_mode = false:
       $$
376
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1
F
fengjiayi 已提交
377 378
       $$
       $$
379
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1
K
kexinzhao 已提交
380
       $$
381

382 383
  For ceil_mode = true:
       $$
384
       H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
385 386
       $$
       $$
387
       W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1
388
       $$
K
kexinzhao 已提交
389

390
  For exclusive = false:
391
       $$
392
       hstart = i * strides[0] - pad_height_top
393 394 395 396 397
       $$
       $$
       hend = hstart + ksize[0]
       $$
       $$
398
       wstart = j * strides[1] - pad_width_left
399 400 401 402 403 404 405
       $$
       $$
       wend = wstart + ksize[1]
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
406

407
  For exclusive = true:
408
       $$
409
       hstart = max(0, i * strides[0] - pad_height_top)
410 411 412 413 414
       $$
       $$
       hend = min(H, hstart + ksize[0])
       $$
       $$
415
       wstart = max(0, j * strides[1] - pad_width_left)
416 417 418 419 420 421 422
       $$
       $$
       wend = min(W, wstart + ksize[1])
       $$
       $$
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$
423

424
)DOC");
425 426
}

C
chengduo 已提交
427 428
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
429
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
430
      const override {
431 432
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
433 434 435
  }
};

Y
Yu Yang 已提交
436
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
437 438
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
439 440
           "The format of input tensor is NCDHW or NDHWC, where N is batch "
           "size, C is "
K
kexinzhao 已提交
441 442 443
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
444
  AddOutput("Out",
C
chengduoZH 已提交
445
            "(Tensor) The output tensor of pooling operator."
446
            "The format of output tensor is also NCDHW or NDHWC, "
K
kexinzhao 已提交
447 448
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
449
            "width of the feature, respectively.");
450

C
chengduoZH 已提交
451
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
452
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
453
                       "and \"avg\" for average-pooling.")
454
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
455 456 457 458
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
459
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
460 461
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
462
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
463 464
  AddAttr<bool>(
      "global_pooling",
K
Kaipeng Deng 已提交
465 466 467
      "(bool) Whether to use the global pooling. "
      "If global_pooling = true, kernel size and paddings will be ignored. "
      "Default False")
468
      .SetDefault(false);
K
kexinzhao 已提交
469 470 471 472
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
473 474
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
475 476
  AddAttr<std::vector<int>>(
      "paddings",
477 478 479 480
      "(vector<int>, default {0,0,0}), paddings(pad_depth_front, "
      "pad_depth_back, "
      "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right"
      ") of pooling operator. "
C
chengduoZH 已提交
481
      "If global_pooling = true, ksize and paddings will be ignored.")
482 483
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
484 485
  AddAttr<bool>(
      "exclusive",
K
Kaipeng Deng 已提交
486
      "(bool) When true, will exclude the zero-padding in the "
487
      "averaging calculating, otherwise, include the zero-padding. Note, it "
K
Kaipeng Deng 已提交
488 489
      "is only used when pooling_type is avg. The default is True. "
      "Default True")
490
      .SetDefault(true);
491 492
  AddAttr<bool>(
      "adaptive",
K
Kaipeng Deng 已提交
493
      "(bool) When true, will perform adaptive pooling instead, "
494 495
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
K
Kaipeng Deng 已提交
496 497
      "pooling in each grid area to get output pooling value. "
      "Default False")
498
      .SetDefault(false);
499

500 501
  AddAttr<bool>(
      "use_cudnn",
K
Kaipeng Deng 已提交
502
      "(bool) Only used in cudnn kernel, need install cudnn. Default False")
503
      .SetDefault(false);
504 505
  AddAttr<bool>(
      "ceil_mode",
K
Kaipeng Deng 已提交
506
      "(bool) Whether to use the ceil function to calculate "
W
wanghaoshuang 已提交
507
      "output height and width. False is the default. If it is set to False, "
K
Kaipeng Deng 已提交
508
      "the floor function will be used. Default False")
509
      .SetDefault(false);
510
  AddAttr<bool>("use_mkldnn",
K
Kaipeng Deng 已提交
511
                "(bool) Only used in mkldnn kernel. Default False")
512
      .SetDefault(false);
513 514
  AddAttr<std::string>(
      "data_format",
515 516 517
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
518
      "the input will be transformed automatically. ")
519 520 521 522 523 524 525
      .SetDefault("NCDHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
526 527
  // TODO(dzhwinter): need to registered layout transform function

528
  AddComment(R"DOC(
K
Kaipeng Deng 已提交
529 530
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
531
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
K
kexinzhao 已提交
532
size, C is the number of channels, and D, H and W are the depth, height and
K
Kaipeng Deng 已提交
533 534
width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
hold three integer elements. These three elements represent depth, height and
K
kexinzhao 已提交
535
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
536 537 538

Example:
  Input:
K
kexinzhao 已提交
539
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
540
  Output:
K
kexinzhao 已提交
541
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

  For pool_padding = "SAME":
       $$
       D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]}
       $$

  For pool_padding = "VALID":
       $$
       D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]}
       $$
       $$
       H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]}
       $$
       $$
       W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]}
       $$

565
  For ceil_mode = false:
566
       $$
567
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1
568 569
       $$
       $$
570
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1
571 572
       $$
       $$
573
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1
574
       $$
575
  For ceil_mode = true:
576
       $$
577
       D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1
578 579
       $$
       $$
580
       H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1
581 582
       $$
       $$
583
       W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1
584
       $$
D
dengkaipeng 已提交
585

586
  For exclusive = false:
587
       $$
588
       dstart = i * strides[0] - pad_depth_front
589 590 591 592 593
       $$
       $$
       dend = dstart + ksize[0]
       $$
       $$
594
       hstart = j * strides[1] - pad_height_top
595 596 597 598 599
       $$
       $$
       hend = hstart + ksize[1]
       $$
       $$
600
       wstart = k * strides[2] -  pad_width_left
601 602 603 604 605 606 607
       $$
       $$
       wend = wstart + ksize[2]
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]}
       $$
608

609
  For exclusive = true:
610
       $$
611
       dstart = max(0, i * strides[0] - pad_depth_front)
612 613 614 615 616
       $$
       $$
       dend = min(D, dstart + ksize[0])
       $$
       $$
617 618 619
       hstart = max(0, j * strides[1] - pad_height_top)
       $$
       $$
620 621 622
       hend = min(H, hstart + ksize[1])
       $$
       $$
623
       wstart = max(0, k * strides[2] - pad_width_left)
624 625 626 627 628 629 630
       $$
       $$
       wend = min(W, wstart + ksize[2])
       $$
       $$
       Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
       $$
K
kexinzhao 已提交
631

632
)DOC");
633
}
634 635 636 637 638
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

H
hong 已提交
639 640 641 642
REGISTER_OPERATOR(
    pool2d, ops::PoolOp, ops::Pool2dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
643
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
644

Q
QI JUN 已提交
645 646 647 648 649
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
650
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
651

H
hong 已提交
652 653 654 655
REGISTER_OPERATOR(
    pool3d, ops::PoolOp, ops::Pool3dOpMaker, ops::PoolOpInferVarType,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
656
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
657

Q
QI JUN 已提交
658 659 660 661 662 663
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);