gpu_info.cc 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
16

W
Wilber 已提交
17
#include <array>
18 19
#include <cstdlib>
#include <mutex>
F
From00 已提交
20
#include <set>
21
#include <vector>
22

23
#include "gflags/gflags.h"
24
#include "paddle/fluid/memory/memory.h"
25
#include "paddle/fluid/platform/cuda_device_guard.h"
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/fluid/platform/flags.h"
28 29 30 31
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/fluid/platform/monitor.h"
#include "paddle/fluid/platform/place.h"
32
#include "paddle/fluid/platform/profiler/mem_tracing.h"
33 34 35
#include "paddle/fluid/string/split.h"
#include "paddle/phi/backends/gpu/gpu_info.h"

36 37 38 39 40 41
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/miopen.h"
#else
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#endif
42

43 44 45 46 47
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
#endif
W
Wilber 已提交
48

49 50 51 52 53 54
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_uint64(gpu_memory_limit_mb);

55 56
PADDLE_DEFINE_EXPORTED_bool(enable_gpu_memory_usage_log,
                            false,
57 58
                            "Whether to print the message of gpu memory usage "
                            "at exit, mainly used for UT and CI.");
59 60
PADDLE_DEFINE_EXPORTED_bool(enable_gpu_memory_usage_log_mb,
                            true,
61 62
                            "Whether to print the message of gpu memory usage "
                            "MB as a unit of measurement.");
63

64 65 66 67 68 69 70 71
constexpr static float fraction_reserve_gpu_memory = 0.05f;

USE_GPU_MEM_STAT;
namespace paddle {
namespace platform {

void GpuMemoryUsage(size_t *available, size_t *total) {
  size_t actual_available, actual_total;
72 73 74 75
  RecordedGpuMemGetInfo(available,
                        total,
                        &actual_available,
                        &actual_total,
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
                        platform::GetCurrentDeviceId());
}

size_t GpuAvailableMemToAlloc() {
  size_t total = 0;
  size_t available = 0;
  GpuMemoryUsage(&available, &total);
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
  // If available size is less than minimum chunk size, no usable memory exists
  size_t available_to_alloc = available - reserving;
  size_t min_chunk_size = GpuMinChunkSize();
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
}

size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}

static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(
103 104
      available_to_alloc,
      0,
105 106 107 108 109 110
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
111 112 113
      (flag_mb > 0ul
           ? flag_mb << 20
           : available_to_alloc * FLAGS_fraction_of_gpu_memory_to_use);
114
  PADDLE_ENFORCE_GE(
115 116
      available_to_alloc,
      alloc_bytes,
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}

size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }

size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }

size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
}

static void RaiseNonOutOfMemoryError(gpuError_t *status) {
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);

  *status = platform::GpuGetLastError();
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);
}

class RecordedGpuMallocHelper {
 private:
  explicit RecordedGpuMallocHelper(int dev_id, uint64_t limit_size = 0)
      : dev_id_(dev_id), limit_size_(limit_size) {
    if (NeedRecord()) {
      mtx_.reset(new std::mutex());
    }
158 159 160 161

    if (FLAGS_enable_gpu_memory_usage_log) {
      // A fake UPDATE to trigger the construction of memory stat instances,
      // make sure that they are destructed after RecordedGpuMallocHelper.
162 163
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id, 0);
      DEVICE_MEMORY_STAT_UPDATE(Allocated, dev_id, 0);
164
    }
165 166 167 168 169
  }

  DISABLE_COPY_AND_ASSIGN(RecordedGpuMallocHelper);

 public:
170 171
  ~RecordedGpuMallocHelper() {
    if (FLAGS_enable_gpu_memory_usage_log) {
172 173
      if (FLAGS_enable_gpu_memory_usage_log_mb) {
        std::cout << "[Memory Usage (MB)] gpu " << dev_id_ << " : Reserved = "
174 175
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Reserved, dev_id_) /
                         1048576.0
176
                  << ", Allocated = "
177 178
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Allocated, dev_id_) /
                         1048576.0
179 180 181
                  << std::endl;
      } else {
        std::cout << "[Memory Usage (Byte)] gpu " << dev_id_ << " : Reserved = "
182
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Reserved, dev_id_)
183
                  << ", Allocated = "
184 185
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Allocated, dev_id_)
                  << std::endl;
186
      }
187 188 189
    }
  }

190
  static RecordedGpuMallocHelper *Instance(int dev_id) {
191 192
    static std::vector<std::unique_ptr<RecordedGpuMallocHelper>> instances_;

193 194 195 196 197 198 199 200 201 202
    std::call_once(once_flag_, [] {
      int dev_cnt = GetGPUDeviceCount();
      instances_.reserve(dev_cnt);
      for (int i = 0; i < dev_cnt; ++i) {
        instances_.emplace_back(
            new RecordedGpuMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20));
      }
    });

    PADDLE_ENFORCE_GE(
203 204
        dev_id,
        0,
205 206 207
        platform::errors::OutOfRange(
            "Device id must be not less than 0, but got %d.", dev_id));
    PADDLE_ENFORCE_LT(
208 209
        dev_id,
        instances_.size(),
210
        platform::errors::OutOfRange("Device id %d exceeds gpu card number %d.",
211 212
                                     dev_id,
                                     instances_.size()));
213 214 215 216 217 218 219 220
    return instances_[dev_id].get();
  }

  /**
   * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation
   * or cudaSuccess would be returned, and the cudaGetLastError() flag
   * would be clear.
   */
221 222
  gpuError_t Malloc(void **ptr,
                    size_t size,
223
                    bool malloc_managed_memory = false) {
224 225 226 227 228 229
    LockGuardPtr<std::mutex> lock(mtx_);
    if (UNLIKELY(NeedRecord() && cur_size_.load() + size > limit_size_)) {
      return gpuErrorOutOfMemory;
    }

    CUDADeviceGuard guard(dev_id_);
230
    gpuError_t result;
231
#ifdef PADDLE_WITH_HIP
232 233 234 235 236
    if (UNLIKELY(malloc_managed_memory)) {
      result = hipMallocManaged(ptr, size);
    } else {
      result = hipMalloc(ptr, size);
    }
237 238
#else
    CUDAGraphCaptureModeGuard capture_mode_guard;
239 240 241 242
    if (UNLIKELY(malloc_managed_memory)) {
      result = cudaMallocManaged(ptr, size);
    } else {
      result = cudaMalloc(ptr, size);
243 244
      VLOG(10) << "[cudaMalloc] size=" << static_cast<double>(size) / (1 << 20)
               << " MB, result=" << result;
245
    }
246 247 248 249
#endif
    if (result == gpuSuccess) {
      cur_size_.fetch_add(size);
      STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
250
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id_, size);
251 252 253 254
      platform::RecordMemEvent(ptr,
                               GPUPlace(dev_id_),
                               size,
                               platform::TracerMemEventType::ReservedAllocate);
F
From00 已提交
255 256 257 258
#ifdef PADDLE_WITH_TESTING
      gpu_ptrs.insert(*ptr);
#endif

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
      return gpuSuccess;
    } else {
      RaiseNonOutOfMemoryError(&result);
      // Non out of memory error would be raised inside
      // RaiseNonOutOfMemoryError. Therefore, we can
      // return cudaErrorMemoryAllocation directly here.
      return gpuErrorOutOfMemory;
    }
  }

  /**
   * Free gpu memory. Usually, free is not allowed to raise error.
   * If it does raise error, the process should be crashed.
   */
  void Free(void *ptr, size_t size) {
    // Purposefully allow cudaErrorCudartUnloading, because
    // that is returned if you ever call cudaFree after the
    // driver has already shutdown. This happens only if the
    // process is terminating, in which case we don't care if
    // cudaFree succeeds.
    CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
    auto err = hipFree(ptr);
    if (err != hipErrorDeinitialized) {
#else
    auto err = cudaFree(ptr);
285 286
    VLOG(10) << "[cudaFree] size=" << static_cast<double>(size) / (1 << 20)
             << " MB";
287 288 289 290 291
    if (err != cudaErrorCudartUnloading) {
#endif
      PADDLE_ENFORCE_GPU_SUCCESS(err);
      cur_size_.fetch_sub(size);
      STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
292
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id_, -size);
293 294 295 296
      platform::RecordMemEvent(ptr,
                               GPUPlace(dev_id_),
                               size,
                               platform::TracerMemEventType::ReservedFree);
297 298 299 300 301
    } else {
      platform::GpuGetLastError();  // clear the error flag when
                                    // cudaErrorCudartUnloading /
                                    // hipErrorDeinitialized
    }
F
From00 已提交
302 303 304 305 306 307
#ifdef PADDLE_WITH_TESTING
    gpu_ptrs.erase(ptr);
#endif
  }

  void *GetBasePtr(void *ptr) {
F
From00 已提交
308
#ifdef PADDLE_WITH_TESTING
F
From00 已提交
309 310 311 312 313
    auto it = gpu_ptrs.upper_bound(ptr);
    if (it == gpu_ptrs.begin()) {
      return nullptr;
    }
    return *(--it);
F
From00 已提交
314 315 316 317 318
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "The RecordedGpuMallocHelper::GetBasePtr is only implemented with "
        "testing, should not use for release."));
    return nullptr;
F
From00 已提交
319
#endif
F
From00 已提交
320
  }
321

322 323 324
  bool GetMemInfo(size_t *avail,
                  size_t *total,
                  size_t *actual_avail,
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
                  size_t *actual_total) {
    {
      CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
      auto result = hipMemGetInfo(actual_avail, actual_total);
#else
      auto result = cudaMemGetInfo(actual_avail, actual_total);
#endif
      if (result != gpuSuccess) {
        *actual_avail = 0;
      }
      RaiseNonOutOfMemoryError(&result);
    }

    if (NeedRecord()) {
      std::lock_guard<std::mutex> guard(*mtx_);
      *avail = std::min(*actual_avail, limit_size_ - cur_size_.load());
      *total = std::min(*actual_total, limit_size_);
      return *total < *actual_total;
    } else {
      *avail = *actual_avail;
      *total = *actual_total;
      return false;
    }
  }

  inline bool NeedRecord() const { return limit_size_ != 0; }

  uint64_t RecordedSize() const { return cur_size_.load(); }

  uint64_t LimitSize() const { return limit_size_; }

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
359 360
  CUresult MemCreate(CUmemGenericAllocationHandle *handle,
                     size_t size,
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
                     const CUmemAllocationProp *prop,
                     unsigned long long flags) {  // NOLINT
    auto result =
        paddle::platform::dynload::cuMemCreate(handle, size, prop, flags);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_add(size);
    }
    return result;
  }

  CUresult MemRelease(CUmemGenericAllocationHandle handle, size_t size) {
    auto result = paddle::platform::dynload::cuMemRelease(handle);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_sub(size);
    }
    return result;
  }

#endif
#endif

 private:
  const int dev_id_;
  const uint64_t limit_size_;
  std::atomic<uint64_t> cur_size_{0};

  mutable std::unique_ptr<std::mutex> mtx_;

  static std::once_flag once_flag_;
F
From00 已提交
390 391 392

  std::set<void *> gpu_ptrs;  // just for testing
};                            // NOLINT
393 394 395

std::once_flag RecordedGpuMallocHelper::once_flag_;

396 397 398
gpuError_t RecordedGpuMalloc(void **ptr,
                             size_t size,
                             int dev_id,
399 400 401
                             bool malloc_managed_memory) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Malloc(
      ptr, size, malloc_managed_memory);
402 403 404 405 406 407 408 409
}

void RecordedGpuFree(void *p, size_t size, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Free(p, size);
}

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
410 411
CUresult RecordedGpuMemCreate(CUmemGenericAllocationHandle *handle,
                              size_t size,
412
                              const CUmemAllocationProp *prop,
413 414 415 416
                              unsigned long long flags,
                              int dev_id) {  // NOLINT
  return RecordedGpuMallocHelper::Instance(dev_id)->MemCreate(
      handle, size, prop, flags);
417 418
}

419 420
CUresult RecordedGpuMemRelease(CUmemGenericAllocationHandle handle,
                               size_t size,
421 422 423 424 425 426
                               int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->MemRelease(handle, size);
}
#endif
#endif

427 428 429 430 431
bool RecordedGpuMemGetInfo(size_t *avail,
                           size_t *total,
                           size_t *actual_avail,
                           size_t *actual_total,
                           int dev_id) {
432 433 434 435 436 437 438 439
  return RecordedGpuMallocHelper::Instance(dev_id)->GetMemInfo(
      avail, total, actual_avail, actual_total);
}

uint64_t RecordedGpuMallocSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->RecordedSize();
}

440 441 442 443
uint64_t RecordedGpuLimitSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->LimitSize();
}

444 445 446 447 448 449 450 451 452 453 454
bool IsGpuMallocRecorded(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->NeedRecord();
}

void EmptyCache(void) {
  std::vector<int> devices = GetSelectedDevices();
  for (auto device : devices) {
    memory::Release(CUDAPlace(device));
  }
}

455
bool IsGPUManagedMemorySupported(int dev_id) {
456
  return phi::backends::gpu::IsGPUManagedMemorySupported(dev_id);
457 458 459
}

bool IsGPUManagedMemoryOversubscriptionSupported(int dev_id) {
460
  return phi::backends::gpu::IsGPUManagedMemoryOversubscriptionSupported(
461 462 463
      dev_id);
}

F
From00 已提交
464 465 466 467
void *GetGpuBasePtr(void *ptr, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetBasePtr(ptr);
}

468
int DnnVersion() { return phi::backends::gpu::DnnVersion(); }
W
Wilber 已提交
469

470
int GetGPUDeviceCount() { return phi::backends::gpu::GetGPUDeviceCount(); }
W
Wilber 已提交
471 472

int GetGPUComputeCapability(int id) {
473
  return phi::backends::gpu::GetGPUComputeCapability(id);
W
Wilber 已提交
474 475 476
}

int GetGPURuntimeVersion(int id) {
477
  return phi::backends::gpu::GetGPURuntimeVersion(id);
W
Wilber 已提交
478 479 480
}

int GetGPUDriverVersion(int id) {
481
  return phi::backends::gpu::GetGPUDriverVersion(id);
W
Wilber 已提交
482 483
}

484
bool TensorCoreAvailable() { return phi::backends::gpu::TensorCoreAvailable(); }
W
Wilber 已提交
485 486

int GetGPUMultiProcessors(int id) {
487
  return phi::backends::gpu::GetGPUMultiProcessors(id);
W
Wilber 已提交
488 489 490
}

int GetGPUMaxThreadsPerMultiProcessor(int id) {
491
  return phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(id);
W
Wilber 已提交
492 493 494
}

int GetGPUMaxThreadsPerBlock(int id) {
495
  return phi::backends::gpu::GetGPUMaxThreadsPerBlock(id);
W
Wilber 已提交
496 497
}

498
int GetCurrentDeviceId() { return phi::backends::gpu::GetCurrentDeviceId(); }
W
Wilber 已提交
499 500

std::array<int, 3> GetGpuMaxGridDimSize(int id) {
501
  return phi::backends::gpu::GetGpuMaxGridDimSize(id);
W
Wilber 已提交
502 503 504
}

std::vector<int> GetSelectedDevices() {
505
  return phi::backends::gpu::GetSelectedDevices();
W
Wilber 已提交
506 507 508
}

const gpuDeviceProp &GetDeviceProperties(int id) {
509
  return phi::backends::gpu::GetDeviceProperties(id);
W
Wilber 已提交
510 511
}

512
void SetDeviceId(int device_id) { phi::backends::gpu::SetDeviceId(device_id); }
W
Wilber 已提交
513

514
gpuError_t GpuGetLastError() { return phi::backends::gpu::GpuGetLastError(); }
W
Wilber 已提交
515 516

void GpuStreamSync(gpuStream_t stream) {
517
  phi::backends::gpu::GpuStreamSync(stream);
W
Wilber 已提交
518 519 520
}

void GpuDestroyStream(gpuStream_t stream) {
521
  phi::backends::gpu::GpuDestroyStream(stream);
W
Wilber 已提交
522 523
}

524
void GpuDeviceSync() { phi::backends::gpu::GpuDeviceSync(); }
W
Wilber 已提交
525

526 527 528 529 530
void GpuMemcpyAsync(void *dst,
                    const void *src,
                    size_t count,
                    gpuMemcpyKind kind,
                    gpuStream_t stream) {
531
  phi::backends::gpu::GpuMemcpyAsync(dst, src, count, kind, stream);
W
Wilber 已提交
532 533
}

534 535 536
void GpuMemcpySync(void *dst,
                   const void *src,
                   size_t count,
W
Wilber 已提交
537
                   gpuMemcpyKind kind) {
538
  phi::backends::gpu::GpuMemcpySync(dst, src, count, kind);
W
Wilber 已提交
539 540
}

541 542 543 544 545 546 547 548
void GpuMemcpyPeerAsync(void *dst,
                        int dst_device,
                        const void *src,
                        int src_device,
                        size_t count,
                        gpuStream_t stream) {
  phi::backends::gpu::GpuMemcpyPeerAsync(
      dst, dst_device, src, src_device, count, stream);
W
Wilber 已提交
549 550
}

551 552 553 554
void GpuMemcpyPeerSync(
    void *dst, int dst_device, const void *src, int src_device, size_t count) {
  phi::backends::gpu::GpuMemcpyPeerSync(
      dst, dst_device, src, src_device, count);
W
Wilber 已提交
555 556 557
}

void GpuMemsetAsync(void *dst, int value, size_t count, gpuStream_t stream) {
558
  phi::backends::gpu::GpuMemsetAsync(dst, value, count, stream);
W
Wilber 已提交
559 560
}

561 562
}  // namespace platform
}  // namespace paddle